Permeability of Ibuprofen in the Form of Free Acid and Salts of L-Valine Alkyl Esters from a Hydrogel Formulation through Strat-M™ Membrane and Human Skin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Ibuprofen and Its Derivatives
2.3. Production of Hydrogel with Active Pharmaceutical Ingredient
2.4. In Vitro Permeation Studies
2.5. In Vitro Skin Accumulation
2.6. HPLC Analysis
2.7. Skin Impedance
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bertges, F.S.; da Penha Henriques do Amaral, M.; Rodarte, M.P.; Fonseca, M.J.V.; Sousa, O.V.; Vilela, F.M.P.; Alves, M.S. Assessment of chemical changes and skin penetration of green arabica coffee beans biotransformed by Aspergillus Oryzae. Biocatal. Agric. Biotechnol. 2020, 23, 101512. [Google Scholar] [CrossRef]
- Janus, E.; Ossowicz, P.; Klebeko, J.; Nowak, A.; Duchnik, W.; Kucharski, Ł.; Klimowicz, A. Enhancement of Ibuprofen solubility and skin permeation by conjugation with l-valine alkyl esters. RSC Adv. 2020, 10, 7570–7584. [Google Scholar] [CrossRef] [Green Version]
- Bolla, P.K.; Clark, B.A.; Juluri, A.; Cheruvu, H.S.; Renukuntla, J. Evaluation of formulation parameters on permeation of ibuprofen from topical formulations using Strat-M® membrane. Pharmaceutics 2020, 12, 151. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Quan, P.; Liu, X.; Wang, M.; Fang, L. Novel chemical permeation enhancers for transdermal drug delivery. Asian J. Pharm. Sci. 2014, 9, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Kawana, M.; Miyamoto, M.; Ohno, Y.; Kihara, A. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. J. Lipid Res. 2020, 61, 884–895. [Google Scholar] [CrossRef] [Green Version]
- Ossowicz, P.; Klebeko, J.; Janus, E.; Nowak, A.; Duchnik, W.; Kucharski, Ł.; Klimowicz, A. The effect of alcohols as vehicles on the percutaneous absorption and skin retention of ibuprofen modified with l-valine alkyl esters. RSC Adv. 2020, 10, 41727–41740. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Hasenkopf, K.; Eisner, P.; Kerscher, M. Release and in vitro skin permeation of polyphenols from cosmetic emulsions. Int. J. Cosmet. Sci. 2013, 35, 491–501. [Google Scholar] [CrossRef]
- Saino, V.; Monti, D.; Burgalassi, S.; Tampucci, S.; Palma, S.; Allemandi, D.; Chetoni, P. Optimization of skin permeation and distribution of ibuprofen by using nanostructures (coagels) based on alkyl vitamin C derivatives. Eur. J. Pharm. Biopharm. 2010, 76, 443–449. [Google Scholar] [CrossRef]
- Carrer, V.; Alonso, C.; Pont, M.; Zanuy, M.; Córdoba, M.; Espinosa, S.; Barba, C.; Oliver, M.A.; Martí, M.; Coderch, L. Effect of propylene glycol on the skin penetration of drugs. Arch. Dermatol. Res. 2020, 312, 337–352. [Google Scholar] [CrossRef]
- Pitzanti, G.; Rosa, A.; Nieddu, M.; Valenti, D.; Pireddu, R.; Lai, F.; Cardia, M.C.; Fadda, A.M.; Sinico, C. Transcutol® P containing SLNs for improving 8-methoxypsoralen skin delivery. Pharmaceutics 2020, 12, 973. [Google Scholar] [CrossRef]
- Kopečná, M.; Macháček, M.; Nováčková, A.; Paraskevopoulos, G.; Roh, J.; Vávrová, K. Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers. Sci. Rep. 2019, 9, 14617. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Guan, J.; Wan, X.; Shang, R.; Shi, X.; Fang, L.; Liu, C. The improved cargo loading and physical stability of ibuprofen orodispersible film: Molecular mechanism of ion-pair complexes on drug-polymer miscibility. J. Pharm. Sci. 2020, 109, 1356–1364. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, D.; Zhang, Z.; Pan, J.; Cui, Z.; Yu, D.-G.; Bligh, S.-W.A. Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites. Polym. Test. 2021, 93, 106872. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Song, W.-L.; Yu, D.-G.; Bligh, S.W.A. Electrospun Janus beads-on-a-string structures for different types of controlled release profiles of double drugs. Biomolecules 2021, 11, 635. [Google Scholar] [CrossRef]
- Ning, T.; Zhou, Y.; Xu, H.; Guo, S.; Wang, K.; Yu, D.-G. Orodispersible Membranes from a modified coaxial electrospinning for fast dissolution of diclofenac sodium. Membranes 2021, 11, 802. [Google Scholar] [CrossRef]
- Balázs, B.; Vizserálek, G.; Berkó, S.; Budai-Szűcs, M.; Kelemen, A.; Sinkó, B.; Takács-Novák, K.; Szabó-Révész, P.; Csányi, E. Investigation of the efficacy of transdermal penetration enhancers through the use of human skin and a skin mimic artificial membrane. J. Pharm. Sci. 2016, 105, 1134–1140. [Google Scholar] [CrossRef]
- Chen, H.; Chang, X.; Du, D.; Li, J.; Xu, H.; Yang, X. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. Int. J. Pharm. 2006, 315, 52–58. [Google Scholar] [CrossRef]
- Zagórska-Dziok, M.; Sobczak, M. Hydrogel-based active substance release systems for cosmetology and dermatology application: A review. Pharmaceutics 2020, 12, 396. [Google Scholar] [CrossRef]
- Jacyna, B.; Maciejewski, B.; Sznitowska, M. Hydrogels—Compounded dermatological preparations. Farm. Pol. 2020, 76, 57–62. [Google Scholar] [CrossRef]
- Badran, M.M.; Kuntsche, J.; Fahr, A. Skin penetration enhancement by a microneedle device (Dermaroller®) in vitro: Dependency on needle size and applied formulation. Eur. J. Pharm. Sci. 2009, 36, 511–523. [Google Scholar] [CrossRef]
- Davies, D.J.; Ward, R.J.; Heylings, J.R. Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol. Vitr. 2004, 18, 351–358. [Google Scholar] [CrossRef]
- Wenkers, B.P.; Lippold, B.C. Skin penetration of nonsteroidal antiinflammatory drugs out of a lipophilic vehicle: Influence of the viable epidermis. J. Pharm. Sci. 1999, 88, 1326–1331. [Google Scholar] [CrossRef]
- Intarakumhaeng, R.; Li, S.K. Effects of solvent on percutaneous absorption of nonvolatile lipophilic solute. Int. J. Pharm. 2014, 476, 266–276. [Google Scholar] [CrossRef]
- Sarveiya, V.; Templeton, J.F.; Benson, H.A.E. Ion-pairs of ibuprofen: Increased membrane diffusion. J. Pharm. Pharmacol. 2010, 56, 717–724. [Google Scholar] [CrossRef]
- Furukawa, S.; Hattori, G.; Sakai, S.; Kamiya, N. Highly Efficient and low toxic skin penetrants composed of amino acid ionic liquids. RSC Adv. 2016, 6, 87753–87755. [Google Scholar] [CrossRef]
- Milanowski, B.; Wosicka-Frąckowiak, H.; Główka, E.; Sosnowska, M.; Woźny, S.; Stachowiak, F.; Suchenek, A.; Wilkowski, D. Optimization and evaluation of the in vitro permeation parameters of topical products with non-steroidal anti-inflammatory drugs through Strat-M® membrane. Pharmaceutics 2021, 13, 1305. [Google Scholar] [CrossRef]
- Haq, A.; Goodyear, B.; Ameen, D.; Joshi, V.; Michniak-Kohn, B. Strat-M® synthetic Membrane: Permeability Comparison to human cadaver skin. Int. J. Pharm. 2018, 547, 432–437. [Google Scholar] [CrossRef]
- Kaur, L.; Singh, K.; Paul, S.; Singh, S.; Singh, S.; Jain, S.K. A mechanistic study to determine the structural similarities between artificial membrane Strat-MTM and biological membranes and its application to carry out skin permeation study of amphotericin B nanoformulations. AAPS PharmSciTech 2018, 19, 1606–1624. [Google Scholar] [CrossRef]
- Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to biological skin in permeation studies: Current trends and possibilities. Pharmaceutics 2020, 12, 152. [Google Scholar] [CrossRef] [Green Version]
- Uchida, T.; Kadhum, W.R.; Kanai, S.; Todo, H.; Oshizaka, T.; Sugibayashi, K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-MTM. Eur. J. Pharm. Sci. 2015, 67, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.; Amaro, M.I.; Healy, A.M.; Cabral, L.M.; de Sousa, V.P. Comparative evaluation of rivastigmine permeation from a transdermal system in the franz cell using synthetic membranes and pig ear skin with in vivo-in vitro correlation. Int. J. Pharm. 2016, 512, 234–241. [Google Scholar] [CrossRef]
- Karadzovska, D.; Riviere, J.E. Assessing vehicle effects on skin absorption using artificial membrane assays. Eur. J. Pharm. Sci. 2013, 50, 569–576. [Google Scholar] [CrossRef]
- Arce, F.J.; Asano, N.; See, G.L.; Itakura, S.; Todo, H.; Sugibayashi, K. Usefulness of artificial membrane, strat-m®, in the assessment of drug permeation from complex vehicles in finite dose conditions. Pharmaceutics 2020, 12, 173. [Google Scholar] [CrossRef] [Green Version]
Compound | The Molar Mass of Used the Compound (g·mol−1) | Pharmaceutical Vehicle (g) | Compound (g) | Ethanol (g) | Total (g) |
---|---|---|---|---|---|
[IBU] | 206.284 | 0.850 | 0.0500 | 0.100 | 1.00 |
[ValOMe][IBU] | 337.458 | 0.850 | 0.0820 | 0.100 | 1.03 |
[ValOEt][IBU] | 351.485 | 0.850 | 0.0859 | 0.100 | 1.04 |
[ValOiPr][IBU] | 365.512 | 0.850 | 0.0888 | 0.100 | 1.04 |
[ValOPr][IBU] | 365.512 | 0.850 | 0.0891 | 0.100 | 1.04 |
[ValOBu][IBU] | 379.539 | 0.850 | 0.0910 | 0.100 | 1.04 |
[ValOAm][IBU] | 393.565 | 0.850 | 0.0962 | 0.100 | 1.05 |
[ValOHex][IBU] | 405.576 | 0.850 | 0.0991 | 0.100 | 1.05 |
[ValOHept][IBU] | 421.619 | 0.850 | 0.1022 | 0.100 | 1.05 |
[ValOOct][IBU] | 435.646 | 0.850 | 0.1061 | 0.100 | 1.06 |
Compound | Human Skin | Strat-M™ |
---|---|---|
Cumulative Mass (μg IBU·cm−2) | ||
[IBU] | 429.672 ± 60.151 b | 1194.362 ± 41.23 b |
[ValOMe][IBU] | 696.683 ± 79.909 b,* | 1359.355 ± 123.895 b,* |
[ValOEt][IBU] | 611.438 ± 24.918 b,* | 974.981 ± 62.779 b |
[ValOiPr][IBU] | 790.526 ± 41.426 b,* | 1488.846 ± 40.435 b,* |
[ValOPr][IBU] | 682.201 ± 29.910 b,* | 1691.708 ± 30.139 b,* |
[ValOBu][IBU] | 684.538 ± 5.599 b,* | 1856.676 ± 71.953 b,* |
[ValOAm][IBU] | 443.249 ± 49.597 b | 1374.142 ± 32.535 b,* |
[ValOHex][IBU] | 263.958 ± 36.699 b | 1019.904 ± 14.149 b |
[ValOHept][IBU] | 246.074 ± 27.522 b | 821.362 ± 46.555 b |
[ValOOct][IBU] | 206.491 ± 50.088 b | 765.666 ± 54.922 b |
Commercial Product | ||
[IBU] | 85.737 ± 11.868 a | 148.081 ± 19.282 a |
Compound | Human Skin | Strat-M™ | Permeation Ratio (JStrat-MTM/JSkin) | r2 (QStrat-M™ vs. QSkin) | ||||
---|---|---|---|---|---|---|---|---|
Jss, μg∙cm−2∙h−1 | KP·103, cm∙h−1 | LT, h | Jss, μg∙cm−2∙h−1 | KP·103, cm∙h−1 | LT, h | |||
Celugel® | ||||||||
[IBU] | 78.46 ± 9.89 b | 1.54 ± 0.04 b | 1.52 ± 0.14 b | 172.63 ± 2.69 b | 3.40 ± 0.05 b | 0.81 ± 0.01 b | 2.20 b | 0.985 a |
[ValOMe][IBU] | 91.72 ± 14.24 *,b | 1.81 ± 0.28 *,b | 1.67 ± 0.03 *,b | 119.54 ± 5.21 b | 2.36 ± 0.10 b | 0.86 ± 0.02 b | 1.30 b | 0.986 a |
[ValOEt][IBU] | 99.16 ± 9.02 *,b | 1.95 ± 0.18 *,b | 1.81 ± 0.03 *,b | 97.48 ± 4.61 b | 1.92 ± 0.09 b | 0.62 ± 0.02 b | 0.98 b | 0.970 b |
[ValOiPr][IBU] | 125.53 ± 9.69 *,b | 2.50 ± 0.19 *,b | 1.79 ± 0.06 *,b | 139.59 ± 4.99 b | 2.75 ± 0.10 b | 0.96 ± 0.07 *,b | 1.11 b | 0.879 b |
[ValOPr][IBU] | 108.26 ± 14.43 *,b | 2.16 ± 0.29 *,b | 1.56 ± 0.02 b | 126.08 ± 6.86 b | 2.48 ± 0.14 b | 0.82 ± 0.01 b | 1.16 b | 0.954 b |
[ValOBu][IBU] | 103.51 ± 13.86 *,b | 2.06 ± 0.28 *,b | 1.36 ± 0.04 b | 110.74 ± 1.18 b | 2.18 ± 0.02b | 1.78 ± 0.86 b | 1.07 b | 0.837 b |
[ValOAm][IBU] | 81.12 ± 2.35 b | 1.61 ± 0.05 b | 1.44 ± 0.18 b | 125.25 ± 3.55 b | 2.47 ± 0.07 b | 0.82 ± 0.09 b | 1.54 b | 0.899 b |
[ValOHex][IBU] | 50.30 ± 5.98 b | 1.00 ± 0.12 b | 1.45 ± 0.02 b | 50.16 ± 3.71 b | 0.99 ± 0.07 b | 0.84 ± 0.09 b | 0.99 b | 0.676 b |
[ValOHept][IBU] | 43.28 ± 6.85 b | 0.86 ± 0.14 b | 1.30 ± 0.04 b | 54.45 ± 11.20 b | 1.07 ± 0.22 b | 1.40 ± 0.44 *,b | 1.26 b | 0.800 b |
[ValOOct][IBU] | 30.82 ± 7.96 b | 0.61 ± 0.16 b | 1.50 ± 0.15 b | 48.24 ± 6.79 b | 0.95 ± 0.13 b | 1.20 ± 0.04 *,b | 1.56 b | 0.870 b |
Commercial Product | ||||||||
[IBU] | 10.54 ± 0.67 a | 0.21 ± 0.01 a | 1.14 ± 0.43 a | 19.39 ± 2.34 a | 0.39 ± 0.05 a | 0.737 ± 0.06 a | 1.84 a | 0.984 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klebeko, J.; Ossowicz-Rupniewska, P.; Nowak, A.; Janus, E.; Duchnik, W.; Adamiak-Giera, U.; Kucharski, Ł.; Prowans, P.; Petriczko, J.; Czapla, N.; et al. Permeability of Ibuprofen in the Form of Free Acid and Salts of L-Valine Alkyl Esters from a Hydrogel Formulation through Strat-M™ Membrane and Human Skin. Materials 2021, 14, 6678. https://doi.org/10.3390/ma14216678
Klebeko J, Ossowicz-Rupniewska P, Nowak A, Janus E, Duchnik W, Adamiak-Giera U, Kucharski Ł, Prowans P, Petriczko J, Czapla N, et al. Permeability of Ibuprofen in the Form of Free Acid and Salts of L-Valine Alkyl Esters from a Hydrogel Formulation through Strat-M™ Membrane and Human Skin. Materials. 2021; 14(21):6678. https://doi.org/10.3390/ma14216678
Chicago/Turabian StyleKlebeko, Joanna, Paula Ossowicz-Rupniewska, Anna Nowak, Ewa Janus, Wiktoria Duchnik, Urszula Adamiak-Giera, Łukasz Kucharski, Piotr Prowans, Jan Petriczko, Norbert Czapla, and et al. 2021. "Permeability of Ibuprofen in the Form of Free Acid and Salts of L-Valine Alkyl Esters from a Hydrogel Formulation through Strat-M™ Membrane and Human Skin" Materials 14, no. 21: 6678. https://doi.org/10.3390/ma14216678
APA StyleKlebeko, J., Ossowicz-Rupniewska, P., Nowak, A., Janus, E., Duchnik, W., Adamiak-Giera, U., Kucharski, Ł., Prowans, P., Petriczko, J., Czapla, N., Bargiel, P., Markowska, M., & Klimowicz, A. (2021). Permeability of Ibuprofen in the Form of Free Acid and Salts of L-Valine Alkyl Esters from a Hydrogel Formulation through Strat-M™ Membrane and Human Skin. Materials, 14(21), 6678. https://doi.org/10.3390/ma14216678