Green Synthesis of Hexagonal Hematite (α-Fe2O3) Flakes Using Pluronic F127-Gelatin Template for Adsorption and Photodegradation of Ibuprofen
Abstract
:1. Introduction
2. Experiment
2.1. Preparation of Hexagonal Flake-Like Hematite (α-Fe2O3) by Gelatin Template
2.2. Characterization
2.3. Ibuprofen Adsorption
2.4. Photocatalytic Degradation of Ibuprofen
3. Results and Discussion
3.1. XRD Analysis
3.2. SEM Analysis
3.3. N2 Adsorption Analysis
3.4. Ibuprofen Removal via Adsorption
3.5. Photocatalytic Degradation of Ibuprofen
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patkowski, J.; Mysliwiec, D.; Chibowski, S. Adsorption of polyethyleneimine (PEI) on hematite. Influence of magnetic field on adsorption of PEI on hematite. Mater. Chem. Phys. 2014, 144, 451–461. [Google Scholar] [CrossRef]
- Dehbi, A.; Dehmani, Y.; Omari, H.; Lammini, A.; Elazhari, K.; Abouarnadasse, S.; Abdallaoui, A. Comparative study of malachite green and phenol adsorption on synthetic hematite iron oxide nanoparticles (α-Fe2O3). Surf. Interfaces 2020, 21, 100637. [Google Scholar] [CrossRef]
- Engwayu, J.; Pawlik, M. Adsorption of anionic polymers on hematite—A study of zeta potential distributions. Miner. Eng. 2020, 148, 106225. [Google Scholar] [CrossRef]
- Quast, K. Direct measurement of oleate adsorption on hematite and its consequences for flotation. Miner. Eng. 2018, 118, 122–132. [Google Scholar] [CrossRef]
- Mamindy-Pajany, Y.; Hurel, C.; Marmier, N.; Roméo, M. Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. Desalination 2011, 281, 93–99. [Google Scholar] [CrossRef]
- Al-Hakkani, M.F.; Gouda, G.A.; Hassan, S.H. A review of green methods for phyto-fabrication of hematite (α-Fe2O3) nanoparticles and their characterization, properties, and applications. Heliyon 2021, 7, e05806. [Google Scholar] [CrossRef]
- Watanabe, H.; Gutleben, C.D.; Seto, J. Sulfate ions on the surface of maghemite and hematite. Solid State Ion. 1994, 69, 29–35. [Google Scholar] [CrossRef]
- Grimm, S.; Stelzner, T.; Leuthäußer, J.; Barth, S.; Heide, K. Particle size effects on the thermal behaviour of maghemite synthesised by flame pyrolysis. Acta 1997, 300, 141–148. [Google Scholar] [CrossRef]
- Noerpel, M.R.; Lenhart, J.J. The impact of particle size on the adsorption of citrate to hematite. J. Colloid Interface Sci. 2015, 460, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-C.; Liang, W.-F.; Nien, Y.-H.; Liu, H.-K.; Yang, R.-B. Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites. Mater. Res. Bull. 2017, 96, 81–85. [Google Scholar] [CrossRef]
- Guedidi, H.; Reinert, L.; Soneda, Y.; Bellakhal, N.; Duclaux, L. Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths. Arab. J. Chem. 2017, 10, S3584–S3594. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Aikat, K.; Halder, G. Biosorptive uptake of ibuprofen by chemically modified Parthenium hysterophorus derived biochar: Equilibrium, kinetics, thermodynamics and modeling. Ecol. Eng. 2016, 92, 158–172. [Google Scholar] [CrossRef]
- Varghese, S.; Ghoroi, C. Improving the wetting and dissolution of ibuprofen using solventless co-milling. Int. J. Pharm. 2017, 533, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-Q.; Zi, T.-Q.; Zhao, X.-R.; Liu, C.; Ren, Q.; Fang, J.-B.; Li, W.-M.; Li, A.-D. Enhanced visible light photocatalytic activity of Fe2O3 modified TiO2 prepared by atomic layer deposition. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sugrañez, R.; Balbuena, J.; Cruz-Yusta, M.; Martín, F.; Morales, J.; Sánchez, L. Efficient behaviour of hematite towards the photocatalytic degradation of NOx gases. Appl. Catal. B Environ. 2015, 165, 529–536. [Google Scholar] [CrossRef]
- Ogi, T.; Li, Q.; Horie, S.; Tameka, A.; Iwaki, T.; Okuyama, K. High-purity core-shell α″-Fe16N2/Al2O3 nanoparticles synthesized from α-hematite for rare-earth-free magnet applications. Adv. Powder Technol. 2016, 27, 2520–2525. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Song, H.; Chen, X. Ordered mesoporous carbons from the carbonization of sulfuric-acid-treated silica/triblock copolymer/sucrose composites. Microporous Mesoporous Mater. 2006, 94, 9–14. [Google Scholar] [CrossRef]
- Nagamine, S.; Kurumada, K.-I.; Tanigaki, M.; Endo, A. Effects of catalytic acid and templating surfactant concentrations on mesostructure of submillimeter-thick mesoporous silica by solvent evaporation synthesis. Microporous Mesoporous Mater. 2001, 49, 57–64. [Google Scholar] [CrossRef]
- Ulfa, M.; Trisunaryanti, W.; Falah, I.I.; Kartini, I. Wormhole-Like Mesoporous Carbons from Gelatine as Multistep Infiltration Effect. Indones. J. Chem. 2016, 16, 239. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Pore structure and pore size controls of ordered mesoporous carbons prepared from resorcinol/formaldehyde/triblock polymers. Microporous Mesoporous Mater. 2009, 118, 218–223. [Google Scholar] [CrossRef]
- Liu, T.; Lai, D.; Feng, X.; Zhu, H.; Chen, J. Synthesis and characterization of a novel mesoporous bioactive glass/hydroxyapatite nanocomposite. Mater. Lett. 2013, 92, 444–447. [Google Scholar] [CrossRef]
- Ulfa, M.; Prasetyoko, D.; Mahadi, A.H.; Bahruji, H. Size tunable mesoporous carbon microspheres using Pluronic F127 and gelatin as co-template for removal of ibuprofen. Sci. Total Environ. 2020, 711, 135066. [Google Scholar] [CrossRef]
- Upadhyay, R.V.; Pisuwala, M.S.; Parekh, K.; Raj, K. Thermal conductivity of flake-shaped iron particles based magnetorheological suspension: Influence of nano-magnetic particle concentration. J. Magn. Magn. Mater. 2020, 503, 1–4. [Google Scholar] [CrossRef]
- Khani, O.; Shoushtari, M.Z.; Ackland, K.; Stamenov, P. The structural, magnetic and microwave properties of spherical and flake shaped carbonyl iron particles as thin multilayer microwave absorbers. J. Magn. Magn. Mater. 2017, 428, 28–35. [Google Scholar] [CrossRef]
- Nasirian, M.; Bustillo-Lecompte, C.F.; Mehrvar, M. Photocatalytic efficiency of Fe2O3/TiO2 for the degradation of typical dyes in textile industries: Effects of calcination temperature and UV-assisted thermal synthesis. J. Environ. Manag. 2017, 196, 487–498. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.; Sinha, K.; Novitskaya, E.; Graeve, O.A. Polyvinylpyrrolidone (PVP) effects on iron oxide nanoparticle formation. Mater. Lett. 2018, 215, 203–206. [Google Scholar] [CrossRef]
- Vargas, M.A.; Diosa, J.E.; Mosquera, E. The structural, optical and magnetic property of iron oxides submicron particles synthesized by the Pechini method from steel industry wastes. J. Magn. Magn. Mater. 2020, 513, 167243. [Google Scholar] [CrossRef]
- Bele, M.; Gaberscek, M.; Dominko, R.; Drofenik, J.; Zupan, K.; Komac, P.; Kocevar, K.; Muševič, I.; Pejovnik, S. Gelatin-pretreated carbon particles for potential use in lithium ion batteries. Carbon 2002, 40, 1117–1122. [Google Scholar] [CrossRef]
- Coradin, T.; Bah, S.; Livage, J. Gelatine/silicate interactions: From nanoparticles to composite gels. Colloids Surf. B Biointerfaces 2004, 35, 53–58. [Google Scholar] [CrossRef]
- Yatsenko, D.A.; Medvedeva, T. Estimating Crystality Index of Microcrystalline Cellulose Using Diffraction Methods. J. Struct. Chem. 2019, 60, 1430–1436. [Google Scholar] [CrossRef]
- Barthe, L.; Hemati, M.; Philippot, K.; Chaudret, B. Dry impregnation in fluidized bed: Drying and calcination effect on nanoparticles dispersion and location in a porous support. Chem. Eng. Res. Des. 2008, 86, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jia, Y. A facile precursor calcination approach to iron oxide micro/nanostructures with a high magnetization. J. Alloy. Compd. 2016, 659, 66–73. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Z.; Zeng, G.; Huang, B.; Dong, H.; Huang, J.; Yang, Z.; Wei, J.; Hu, L.; Zhang, Q. Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd. Chem. Eng. J. 2016, 284, 247–259. [Google Scholar] [CrossRef]
- Wu, L.; Yu, J.; Zhang, L.; Wang, X.; Li, S. Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J. Solid State Chem. 2004, 177, 3666–3674. [Google Scholar] [CrossRef]
- Shah, A.H.; Rather, M.A. Effect of calcination temperature on the crystallite size, particle size and zeta potential of TiO2 nanoparticles synthesized via polyol-mediated method. Mater. Today Proc. 2021, 44, 482–488. [Google Scholar] [CrossRef]
- Haruna, K.; Obot, I.; Ankah, N.; Sorour, A.; Saleh, T. Gelatin: A green corrosion inhibitor for carbon steel in oil well acidizing environment. J. Mol. Liq. 2018, 264, 515–525. [Google Scholar] [CrossRef]
- Yin, R.; Sun, J.; Xiang, Y.; Shang, C. Recycling and reuse of rusted iron particles containing core-shell Fe-FeOOH for ibuprofen removal: Adsorption and persulfate-based advanced oxidation. J. Clean. Prod. 2018, 178, 441–448. [Google Scholar] [CrossRef]
- Chahm, T.; Rodrigues, C.A. Removal of ibuprofen from aqueous solutions using O-carboxymethyl-N-laurylchitosan/γ-Fe2O3. Env. Nanotechnol. Monit. Manag. 2017, 7, 139–148. [Google Scholar] [CrossRef]
- Ali, D.I.; Al-Othman, Z.A.; Alwarthan, A. Synthesis of composite iron nano adsorbent and removal of ibuprofen drug residue from water. J. Mol. Liq. 2016, 219, 858–864. [Google Scholar] [CrossRef]
- Khazri, H.; Ghorbel-Abid, I.; Kalfat, R.; Trabelsi-Ayadi, M. Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: Equilibrium, kinetics, and thermodynamic study. Appl. Water Sci. 2017, 7, 3031–3040. [Google Scholar] [CrossRef] [Green Version]
- Essandoh, M.; Kunwar, B.; Pittman, C.U., Jr.; Mohan, D.; Mlsna, T. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 2015, 265, 219–227. [Google Scholar] [CrossRef]
- Banerjee, P.; Das, P.; Zaman, A.; Das, P. Application of graphene oxide nanoplatelets for adsorption of Ibuprofen from aqueous solutions: Evaluation of process kinetics and thermodynamics. Process. Saf. Environ. Prot. 2016, 101, 45–53. [Google Scholar] [CrossRef]
- Pucić, I.; Jurkin, T. FTIR assessment of poly(ethylene oxide) irradiated in solid state, melt and aqeuous solution. Radiat. Phys. Chem. 2012, 81, 1426–1429. [Google Scholar] [CrossRef]
- Kann, Y.; Shurgalin, M.; Krishnaswamy, R. FTIR spectroscopy for analysis of crystallinity of poly(3-hydroxybutyrate-co-4 -hydroxybutyrate) polymers and its utilization in evaluation of aging, orientation and composition. Polym. Test. 2014, 40, 218–224. [Google Scholar] [CrossRef]
- Xu, J.; Guo, B.-H.; Yang, R.; Wu, Q.; Chen, G.-Q.; Zhang, Z.-M. In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer 2002, 43, 6893–6899. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Shih, Y.-J.; Chang, C.-C. Adsorption of fluoride by waste iron oxide: The effects of solution pH, major coexisting anions, and adsorbent calcination temperature. J. Hazard. Mater. 2011, 186, 1355–1359. [Google Scholar] [CrossRef]
- Öner, M.; Yetiz, E.; Ay, E.; Uysal, U. Ibuprofen release from porous hydroxyapatite tablets. Ceram. Int. 2011, 37, 2117–2125. [Google Scholar] [CrossRef]
- Campos, I.; Espindola, A.; Chagas, C.; Barbosa, E.; de Castro, C.E.; Molina, C.; Fonseca, F.L.A.; Haddad, P.S. Biocompatible superparamagnetic nanoparticles with ibuprofen as potential drug carriers. SN Appl. Sci. 2020, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Satapathy, M.K.; Banerjee, P.; Das, P. Plant-mediated synthesis of silver-nanocomposite as novel effective azo dye adsorbent. Appl. Nanosci. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Madikizela, L.M.; Chimuka, L. Synthesis, adsorption and selectivity studies of a polymer imprinted with naproxen, ibuprofen and diclofenac. J. Environ. Chem. Eng. 2016, 4, 4029–4037. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, H.; Wang, C.; Mao, X.; Wang, Y.; Yang, Y.; Liu, G. Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-Dimensional Iron Oxide Particles. J. Phys. Chem. C 2010, 114, 17051–17061. [Google Scholar] [CrossRef]
- Sanad, M.M.; Farahat, M.M.; El-Hout, S.I.; El-Sheikh, S.M. Preparation and characterization of magnetic photocatalyst from the banded iron formation for effective photodegradation of methylene blue under UV and visible illumination. J. Environ. Chem. Eng. 2021, 9, 105127. [Google Scholar] [CrossRef]
Sample | a Particle Size (µm) | b Crystallinity (%) | c Elemental Composition% | |||
---|---|---|---|---|---|---|
C | O | Fe | Others | |||
Fe2O3-G-500C | 1.0–3.0 | 48.31 | 3.18 | 21.82 | 74.32 | 0.68 |
Fe2O3-G-600C | 4.0–5.0 | 57.88 | 0.75 | 17.17 | 80.07 | 2.01 |
Fe2O3-G-700C | 1.0–2.0 | 63.19 | 0 | 17.15 | 82.85 | 0 |
SAMPLE | SBET | V Tot | R(A) |
---|---|---|---|
Fe2O3-G-500C | 49 | 0.166 | 37.1 |
Fe2O3-G-600C | 16 | 0.028 | 43.3 |
Fe2O3-G-700C | 7 | 0.030 | 83.4 |
Sample | Co (ppm) | qe Exp (mg/g) | Removal Efficiency, % | Pseudo First Order | Pseudo Second Order | ||||
---|---|---|---|---|---|---|---|---|---|
qe Cal (mg/g) | k1 (min−1) | R2 | qe Cal (mg/g) | k2 (g·mg−1·min−1) | R2 | ||||
Fe2O3-G-500 | 100 | 55.51 | 22.2 | 419.7 | 0.0986 | 0.6514 | 55.55 | 0.083 | 0.999 |
Fe2O3-G-600 | 100 | 42.12 | 16.7 | 390.7 | 0.0901 | 0.524 | 41.66 | 0.078 | 0.969 |
Fe2O3-G-700 | 100 | 25.61 | 11.1 | 337.7 | 0.0926 | 0.5514 | 25.28 | 0.058 | 0.975 |
Sampel | I431/I577 (FTIR) | Crystalinity % (XRD) | % Ratio Crystalinity (FTIR) a | % Ratio Crystalinity (XRD) b |
---|---|---|---|---|
Fe2O3-G-500 | 1.030 | 48.310 | 12.649 | 23.548 |
Fe2O3-G-600 | 1.058 | 57.880 | 10.321 | 8.403 |
Fe2O3-G-700 | 1.180 | 63.190 | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulfa, M.; Prasetyoko, D.; Bahruji, H.; Nugraha, R.E. Green Synthesis of Hexagonal Hematite (α-Fe2O3) Flakes Using Pluronic F127-Gelatin Template for Adsorption and Photodegradation of Ibuprofen. Materials 2021, 14, 6779. https://doi.org/10.3390/ma14226779
Ulfa M, Prasetyoko D, Bahruji H, Nugraha RE. Green Synthesis of Hexagonal Hematite (α-Fe2O3) Flakes Using Pluronic F127-Gelatin Template for Adsorption and Photodegradation of Ibuprofen. Materials. 2021; 14(22):6779. https://doi.org/10.3390/ma14226779
Chicago/Turabian StyleUlfa, Maria, Didik Prasetyoko, Hasliza Bahruji, and Reva Edra Nugraha. 2021. "Green Synthesis of Hexagonal Hematite (α-Fe2O3) Flakes Using Pluronic F127-Gelatin Template for Adsorption and Photodegradation of Ibuprofen" Materials 14, no. 22: 6779. https://doi.org/10.3390/ma14226779
APA StyleUlfa, M., Prasetyoko, D., Bahruji, H., & Nugraha, R. E. (2021). Green Synthesis of Hexagonal Hematite (α-Fe2O3) Flakes Using Pluronic F127-Gelatin Template for Adsorption and Photodegradation of Ibuprofen. Materials, 14(22), 6779. https://doi.org/10.3390/ma14226779