An Investigation on Substitution of Ag Atoms for Al or Ti Atoms in the Ti2AlC MAX Phase Ceramic Based on First-Principles Calculations
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Crystal Structure and Stability of the Ti2(Al1−x, Agx)C
3.2. Crystal Structure and Stability of the (Ti1−y, Agy)2AlC
4. Conclusions
- Ag could substitute for Al or Ti in Ti2AlC. With increasing the substitution ratio of Ag for Al, the supercell parameters of a and b of the Ti2(Al1−x,Agx)C supercell showed almost no change, as well as the value of c increased slightly. For the volume of the supercell, it first increased and then decreased. The supercell parameters of a and b of the (Ti1−y,Agy)2AlC supercell also exhibited no obvious change with increasing the substitution ratio of Ag for Ti. However, the value of c first increased and then decreased, while the volume of the supercell increased continuously. In general, for the compound containing more Ag, the symmetry of the hexagonal Ti2AlC crystal structure would be distorted. The formation and cohesive energies of the systems exhibited an increasing trend after the substitution of Ag for Al or Ti, suggesting the decline in structural stability of the Ti2AlC. Lastly, the substitution always occurred preferentially in one atomic layer.
- The substitution limit of Ag for Al was calculated to be 12.5% for the Ti2(Al1−x,Agx)C supercell without ruining lattice stability. During substitution, the bonding behavior of Ag atoms was similar to that of Al atoms. The original Al-Ti bond (overlap population: 0.30) was replaced by a weaker Ti-Ag bond (overlap population: 0.11), which should be responsible for the decline of the structural stability of the Ti2(Al0.875,Ag0.125)C. The replacement of Al-Ti bond by Ti-Ag bond generated excess electrons filling Ti d orbits, strengthening the Ti-Ti bond. The contribution of Ag 4d orbital electrons toward the DOS at EF coupled with the filling of Ti d orbital electrons improved electrical conductivity of the Ti2(Al0.875,Ag0.125)C significantly, compared to the original Ti2AlC.
- When Ag substituted for Ti in the Ti2AlC, the bonding behavior of Ag atoms was similar to that of Ti atoms, which would give rise the Ag-Al and Ag-C bonds. In addition, the original Al-Ti bond became weaker as well as new Ti-Ti and C-C anti-bonds were generated (the anti-bonds became weaker with increasing the substation ratio) after substitution, being responsible for the decline of the structural stability. The compensation effect of Ag 4d orbital electrons toward electrical conductivity of the (Ti1−y,Agy)2AlC was greater than the loss of Ti d orbital electrons driven by the substitution of Ag for Ti, improving the electrical conductivity. Through comparing the Ti-Ag bond for the substitution of Ag for Al with Ag-Al and Ag-C bonds for the substitution of Ag for Ti, it can be concluded that Ag atoms preferentially substituted for Ti atoms in the Ti2AlC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barsoum, M.W. The MN+1AXN phases, A new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 2000, 1, 201–281. [Google Scholar] [CrossRef]
- Gupta, S.; Barsoum, M.W. On the tribology of the MAX phases and their composites during dry sliding, A review. Wear 2011, 9, 1878–1894. [Google Scholar] [CrossRef]
- Eklund, P.; Rosen, J.; Persson, P.O.Å. Layered ternary Mn+1AXn phases and their 2D derivative MXene, An overview from a thin-film perspective. J. Phys. D Appl. Phys. 2017, 11, 113001. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.M. Progress in research and development on MAX phases, A family of layered ternary compounds. Int. Mater. Rev. 2011, 3, 143–166. [Google Scholar] [CrossRef]
- Smialek, J.L. Kinetic aspects of Ti2AlC MAX phase oxidation. Oxid. Met. 2015, 83, 351–366. [Google Scholar] [CrossRef]
- Gupta, S.; Filimonov, D.; Palanisamy, T.; Barsoum, M. Tribological behavior of select MAX phases against Al2O3 at elevated temperatures. Wear 2008, 3, 560–565. [Google Scholar] [CrossRef]
- Wang, X.H.; Zhou, Y.C. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics, A review. J. Mater. Sci. Technol. 2010, 5, 385–416. [Google Scholar] [CrossRef]
- Bai, Y.L.; He, X.D.; Zhu, C.C.; Chen, G.Q. Microstructures, electrical, thermal, and mechanical properties of bulk Ti2AlC synthesized by self-propagating high-temperature combustion synthesis with pseudo hot isostatic pressing. J. Am. Ceram. Soc. 2012, 1, 358–364. [Google Scholar] [CrossRef]
- Hoffman, E.N.; Vinson, D.; Sindelar, R.; Tallman, D.; Kohse, G.; Barsoum, M. MAX phase carbides and nitrides, Properties for future nuclear power plant in-core applications and neutron transmutation analysis. Nucl. Eng. Des. 2012, 244, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Barsoum, M.W.; Salama, I.; El-Raghy, T.; Golczewski, J.; Seifert, H.J.; Aldinger, F.; Porter, W.D.; Wang, H. Thermal and electrical properties of Nb2AlC, (Ti, Nb)2AlC and Ti2AlC. Metall. Mater. Trans. A 2002, 33, 2775–2779. [Google Scholar] [CrossRef]
- Meng, F.; Zhou, Y.C.; Wang, J.Y. Strengthening Ti2AlC by substituting Ti with V. Scr. Mater. 2005, 53, 1369–1372. [Google Scholar] [CrossRef]
- Rosen, J.; Persson, P.O.A.; Ionescu, M.; Kondyurin, A.; McKenzie, D.R.; Bilek, M.M. Oxygen incorporation in Ti2AlC thin films. Appl. Phys. Lett. 2008, 6, 64102. [Google Scholar] [CrossRef]
- Lu, C.J.; Piven, K.; Qi, Q.; Zhang, J.; Hug, G.; Jankowiak, A. Substitution behavior of Si atoms in the Ti2AlC ceramics. Acta Mater. 2018, 144, 543–551. [Google Scholar] [CrossRef]
- Liu, K.X.; Li, Y.J.; Yang, J.G.; Liu, Y.; Yao, Y. Generative principal component thermography for enhanced defect detection and analysis. IEEE Trans. Instrum. Meas. 2020, 10, 8261–8269. [Google Scholar] [CrossRef]
- Hug, G.; Jaouen, M.; Barsoum, M. X-ray absorption spectroscopy, EELS, and full-potential augmented plane wave study of the electronic structure of Ti2AlC, Ti2AlN, Nb2AlC and (Ti0.5Nb0.5)2AlC. Phys. Rev. B 2005, 2, 24105. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Meng, F.L.; Zhang, J. New MAX-phase compounds in the V-Cr-Al-C system. J. Am. Ceram. Soc. 2008, 4, 1357–1360. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, X.W.; Hang, W.; Liu, M.; Song, Y.X.; Yuan, J.L.; Zhang, T.H. Nanoindentation size effect on stochastic behavior of incipient plasticity in a LiTaO3 single crystal. Eng. Fract. Mech. 2020, 226, 106877. [Google Scholar] [CrossRef]
- Dahlqvist, M.; Alling, B.; Abrikosov, I.A.; Rosén, J.; Dahlqvist, M. Phase stability of Ti2AlC upon oxygen incorporation, A first-principles investigation. Phys. Rev. B 2010, 2, 24111. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Y.; Zhou, Y.C. Ab initio elastic stiffness of nano-laminate (MxM’2−x)AlC (M and M’ = Ti, V and Cr) solid solution. J. Phys. Condens. Matter 2004, 16, 2819–2827. [Google Scholar] [CrossRef]
- Ahuja, R.; Schneider, J.M.; Sun, Z. Theoretical investigation of the solubility in (MxM’2−x)AlC (M and M’ = Ti, V, Cr). Phys. Rev. B 2003, 22, 224112. [Google Scholar] [CrossRef]
- Liao, T.; Wang, J.Y.; Zhou, Y.C. First-principles investigation of intrinsic defects and (N, O) impurity atom stimulated Al vacancy in Ti2AlC. Appl. Phys. Lett. 2008, 26, 261911–261913. [Google Scholar] [CrossRef] [Green Version]
- Barsoum, M.W.; El-Raghy, T.; Ali, M. Processing and characterization of Ti2AlC, Ti2AlN, and Ti2AlC0.5N0.5. Metall. Mater. Trans. A 2000, 7, 1857–1865. [Google Scholar] [CrossRef]
- Wang, G.C.; Fan, G.H.; Zhang, J.; Wang, T.P.; Liu, X.W. Microstructure evolution and brazing mechanism of Ti2AlC-Ti2AlC joint by using pure-silver filler metal. Ceram. Int. 2015, 6, 8203–8210. [Google Scholar] [CrossRef]
- Lu, C.J.; Wang, G.C.; Yang, G.; Fan, G.H.; Zhang, J.; Liu, X.W. Substitution behavior of Ag atoms in the Ti2AlC ceramic. J. Am. Ceram. Soc. 2017, 2, 732–738. [Google Scholar] [CrossRef]
- Kohn, W.; Hohenberg, P. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation, Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 2002, 11, 2717–2744. [Google Scholar] [CrossRef]
- Wang, J.Y.; Zhou, Y.C.; Liao, T.; Zhang, J.; Lin, Z.J. A first-principles investigation of the phase stability of Ti2AlC with Al vacancies. Scr. Mater. 2008, 3, 227–230. [Google Scholar] [CrossRef]
- Baben, M.; Shang, L.; Emmerlich, J.; Schneider, J.M. Oxygen incorporation in M2AlC (M = Ti, V, Cr). Acta Mater. 2012, 12, 4810–4818. [Google Scholar] [CrossRef]
- Pack, J.D.; Monkhorst, H.J. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 12, 5188–5192. [Google Scholar] [CrossRef]
- He, X.D.; Bai, Y.L.; Chen, Y.; Zhu, C.C.; Li, M.W.; Barsoum, M.W. Phase stability, electronic structure, compressibility, elastic and optical properties of a newly discovered Ti3SnC2: A first-principle study. J. Am. Ceram. Soc. 2011, 94, 3907–3914. [Google Scholar] [CrossRef]
- He, X.D.; Bai, Y.L.; Zhu, C.C.; Sun, Y.; Li, M.W.; Barsoum, M.W. General trends in the structural, electronic and elastic properties of the M3AlC2 phases (M = transition metal): A first-principle study. Comp. Mater. Sci. 2010, 49, 691–698. [Google Scholar] [CrossRef]
- Bai, Y.L.; He, X.D.; Sun, Y.; Zhu, C.C.; Li, M.W.; Shi, L.P. Chemical bonding and elastic properties of Ti3AC2 phases (A = Si, Ge, and Sn): A first-principle study. Solid State Sci. 2010, 12, 1220–1225. [Google Scholar] [CrossRef]
- He, X.D.; Bai, Y.L.; Li, Y.B.; Zhu, C.C.; Li, M.W. Ab initio calculations for properties of MAX phases Ti2InC, Zr2InC, and Hf2InC. Solid State Commun. 2009, 149, 564–566. [Google Scholar] [CrossRef]
- Shah, R.; Pickard, C.J.; Payne, M.C.; Segall, M.D. Population analysis of plane-wave electronic structure calculations of bulk materials. Phys. Rev. B 1996, 23, 16317–16320. [Google Scholar] [CrossRef] [Green Version]
- Wilhelmsson, O.; Palmquist, J.P.; Jansson, U.; Mattesini, M.; Li, S.; Ahuja, R.; Eriksson, O.; Magnuson, M. Electronic structure and chemical bonding in Ti2AlC investigated by soft x-ray emission spectroscopy. Phys. Rev. B 2006, 19, 195108. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Han, H.; Wickramaratne, D.; Liu, W.G.; Zhao, M.W.; Huai, P. A comparative first-principles study of the electronic, mechanical, defect and acoustic properties of Ti2AlC and Ti3AlC. J. Phys. D Appl. Phys. 2014, 4721, 215301. [Google Scholar] [CrossRef]
Supercell | Supercell Parameter (Å) | Volume (Å3) | Etot (eV) | Ef (eV) | Ecoh (eV) | ||
---|---|---|---|---|---|---|---|
a | b | c | |||||
Ti2AlC | 6.136 | 6.136 | 13.733 | 447.747 | −27,380.253 | −6.735 | −0.767 |
Ti2(Al0.875,Ag0.125)C | 6.134 | 6.134 | 13.833 | 450.763 | −28,350.931 | −6.667 | −0.725 |
Ti2(Al0.75,Ag0.25)C | 6.145 | 6.156 | 13.971 | 457.419 | −29,320.755 | −6.573 | −0.657 |
Ti2(Al0.625,Ag0.375)C | 6.118 | 6.119 | 13.971 | 452.983 | −30,293.051 | −6.555 | −0.632 |
Ti2(Al0.5,Ag0.5)C | 6.128 | 6.113 | 14.059 | 455.752 | −31,263.752 | −6.488 | −0.624 |
Supercell | Species | Ion | s | p | d | Total | Charge (e) |
---|---|---|---|---|---|---|---|
Ti2AlC | Ti | 2.18 | 6.75 | 2.67 | 11.60 | 0.40 | |
Al | 1.09 | 1.96 | 0.00 | 3.05 | −0.05 | ||
C | 1.47 | 3.28 | 0.00 | 4.75 | −0.75 | ||
Ti2(Al0.875,Ag0.125)C | Ti | 2, 3, 6 | 2.18 | 6.73 | 2.63 | 11.54 | 0.46 |
Al | 1, 4, 6 | 1.09 | 1.94 | 0.00 | 3.03 | −0.03 | |
C | 1.47 | 3.28 | 0.00 | 4.76 | −0.76 | ||
Ag | 0.76 | 1.02 | 9.70 | 11.48 | −0.48 |
Supercell | Bond | Population | Length (Å) |
---|---|---|---|
Ti2AlC | C-Ti | 0.39 | 2.10798 |
Ti-Ti | 0.04 | 2.89219 | |
Al-Ti | 0.30 | 2.89517 | |
Ti2(Al0.875,Ag0.125)C | C 004-Ti 002 | 0.41 | 2.10481 |
Ti 002-Ti 008 | 0.09 | 2.89508 | |
Al 005-Ti 009 | 0.29 | 2.89347 | |
Ti 006-Ag 001 | 0.11 | 2.93873 |
Supercell | Supercell Parameter (Å) | Volume (Å3) | Etot (eV) | Ef (eV) | Ecoh (eV) | ||
---|---|---|---|---|---|---|---|
a | b | c | |||||
Ti2AlC | 6.136 | 6.136 | 13.733 | 447.747 | −27,380.253 | −6.735 | −0.767 |
(Ti0.9375,Ag0.0625)2AlC | 6.141 | 6.141 | 13.816 | 451.211 | −26,801.127 | −6.500 | −0.652 |
(Ti0.875,Ag0.125)2AlC | 6.169 | 6.163 | 13.761 | 452.959 | −26,222.551 | −6.344 | −0.554 |
Supercell | Bond | Population | Length (Å) |
---|---|---|---|
Ti2AlC | C-Ti | 0.39 | 2.10798 |
Ti-Ti | 0.04 | 2.89219 | |
Al-Ti | 0.30 | 2.89517 | |
(Ti0.9375,Ag0.0625)2AlC | C 003-Ti 012 | 0.44 | 2.08314 |
Ti 001-Ti 010 | 0.01 | 2.87822 | |
Ti 008-Ti 014 | −0.03 | 2.93187 | |
Al 003-Ti 006 | 0.24 | 2.94647 | |
Al 001-Ag 001 | 0.33 | 2.69190 | |
C 001-C 003 | −0.09 | 2.94155 | |
C 001-Ag 001 | 0.20 | 2.46208 | |
(Ti0.875,Ag0.125)2AlC | C 003-Ti 011 | 0.47 | 2.01204 |
C 003-Ti 004 | 0.50 | 2.05016 | |
Ti 001-Ti 009 | −0.02 | 2.85133 | |
Ti 007-Ti 009 | −0.05 | 2.92157 | |
Al 002-Ti 001 | 0.24 | 2.93558 | |
Al 001-Al 007 | 0.23 | 2.96005 | |
C 001-Ag 001 | 0.21 | 2.44407 | |
C 007-Ag 001 | 0.24 | 2.42123 | |
Al 005-Ag 001 | 0.36 | 2.74509 | |
C 003-C 005 | −0.09 | 2.92041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Zhou, J.; Chen, W.; Yang, J.; Zhang, J.; He, Y. An Investigation on Substitution of Ag Atoms for Al or Ti Atoms in the Ti2AlC MAX Phase Ceramic Based on First-Principles Calculations. Materials 2021, 14, 7068. https://doi.org/10.3390/ma14227068
Wang G, Zhou J, Chen W, Yang J, Zhang J, He Y. An Investigation on Substitution of Ag Atoms for Al or Ti Atoms in the Ti2AlC MAX Phase Ceramic Based on First-Principles Calculations. Materials. 2021; 14(22):7068. https://doi.org/10.3390/ma14227068
Chicago/Turabian StyleWang, Guochao, Jiahe Zhou, Weijian Chen, Jianguo Yang, Jie Zhang, and Yanming He. 2021. "An Investigation on Substitution of Ag Atoms for Al or Ti Atoms in the Ti2AlC MAX Phase Ceramic Based on First-Principles Calculations" Materials 14, no. 22: 7068. https://doi.org/10.3390/ma14227068
APA StyleWang, G., Zhou, J., Chen, W., Yang, J., Zhang, J., & He, Y. (2021). An Investigation on Substitution of Ag Atoms for Al or Ti Atoms in the Ti2AlC MAX Phase Ceramic Based on First-Principles Calculations. Materials, 14(22), 7068. https://doi.org/10.3390/ma14227068