Relationship between the Tensile Properties and Damping Capacity of Fe-22%Mn-12%Cr-4%Co-3%Ni-2%Si Alloys by Fatigue Stress
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, M.S.; Lee, Y.N.; Nam, K.W.; Kang, C.Y. Effect of Stress on the Damping Capacity of Damaged Damping Alloy under Fatigue Stress. Korean J. Mater. Res. 2018, 28, 583–589. [Google Scholar] [CrossRef]
- Jeong, S.; Kang, C.Y. Effect of Deformation Induced Martensite on Damping Capacity of Fe-26Mn-4Co-2Al Alloy. Korean J. Mater. Res. 2018, 26, 493–497. [Google Scholar] [CrossRef]
- Kang, C.Y.; Kim, S.H.; Jeong, G.S. Effect of Cold Working on the Tensile Strength of Fe-26Mn-4Co-2Al Damping Alloy. J. Tor. Soc. Power Syst. Eng. 2016, 20, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Kwon, M.K.; Kang, C.Y. Correlationship Between Tensile Properties and Damping Capacity of 316L Stainless Steel. Korean J. Mater. Res. 2014, 24, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Son, D.U.; Kim, J.H.; Kim, I.S.; Miyahara, K.; Sung, J.H.; Kang, C.Y. Effect of ε Martensite on the Damping Capacity of Austenitic Stainless Steel. J. Korea Inst. Met. Mater. 2004, 42, 621–625. [Google Scholar]
- Birchon, D.E.; Bromly, D. Healey, Mechanism of Energy Dissipation in High-Damping-Capacity Manganese-Copper Alloys. Met. Sci. J. 1968, 2, 41–467. [Google Scholar] [CrossRef]
- Kommel, L. Microstructure and properties that change during hard cyclic visco-plastic deformation of bulk high purity niobium. Int. J. Refract. Hard Met. 2019, 79, 10–17. [Google Scholar] [CrossRef]
- Jee, K.K.; Jang, W.Y.; Baik, S.H.; Shin, M.C. Damping mechanism and application of Fe-Mn based alloys. Mater. Sci. Eng. A 1999, 273–275, 538–542. [Google Scholar] [CrossRef]
- Nagy, E.; Mertinger, V.; Tranta, F.; Solyom, J. Deformation Induced Martensite in Stainless Steel. Mater. Sci. Eng. A 2004, 378, 308–313. [Google Scholar] [CrossRef]
- Miller, R.L. A rapid X-ray method for the determination of retained austenite. Trans. ASM 1964, 57, 892–899. [Google Scholar]
- Shim, H.; Kang, C. Effect of thermo-mechanical treatment on the microstructure evaluation and mechanical properties of Fe-20Mn-12Cr-3Ni-3Si damping alloy. Materials 2019, 12, 1119. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, H.; Sohmura, T. An X-ray diffraction method for quantitative determination of retained austenite in the production line of metastable austenitic stainless steel. Trans. ISIJ 1983, 23, 543–549. [Google Scholar] [CrossRef]
- Olson, G.B.; Cohen, M. Kinetics of strain-induced martensitic nucleation. Metall. Trans. A 1975, 6, 791–795. [Google Scholar] [CrossRef]
- Stringfellow, R.G.; Parks, D.M.; Olson, G.B. A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels. Acta Metall. Mater. 1992, 40, 1703–1710. [Google Scholar] [CrossRef]
- van Tol, R.T.; Kim, J.K.; Zhao, L.; Sietsma, J.; de Cooman, B.C. α’-Martensite formation in deep-drawn Mn-based TWIP steel. J. Mater. Sci. 2012, 47, 4845–4850. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Ichinose, M.; Hirotsu, Y.; Inoue, Y. Effect of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe-Mn-Al alloys. ISIJ Int. 1989, 29, 868–877. [Google Scholar] [CrossRef]
- Grunes, R.L.; D’Antonio, C.; Mukherjee, K. A study of α′ martensite nucleation in the iron15% Mn alloy. Mater. Sci. Eng. 1972, 9, 1–6. [Google Scholar] [CrossRef]
- Olson, G.B.; Cohen, M. A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation. Metall. Trans. A 1976, 7, 1897–1904. [Google Scholar]
- Bouaziz, O.; Allain, S.; Scott, C.P.; Cugy, P.; Barbier, D. High manganese austenitic twinning induced plasticity steel: A review of the microstructure properties relationships. Curr. Opin. Solid St. M. 2011, 15, 141–168. [Google Scholar] [CrossRef]
- Giles, P.M.; Marder, A.R. The effect of composition on the pressure-induced HCP (ε) transformation in iron. Met. Trans. 1971, 2, 1371–1378. [Google Scholar]
- Li, J.C.; Zhao, M.; Jiang, Q. Alloy design of FeMnSiCrNi shape memory alloys related to stacking fault energy. Metall. Mater. Trans. A 2000, 31, 581–584. [Google Scholar] [CrossRef]
- Tian, Y.; Borgenstam, A.; Hedström, P. A microstructural investigation of athermal and deformation-induced martensite in Fe-Cr-Ni alloys. Mater. Today Proc. 2015, 2, 687–690. [Google Scholar]
- Choi, Y.; Dong, Z.; Li, W.; Schonecker, S.; Kim, H.; Kwon, S.; Vitos, L. Predicting the stacking fault energy of austenitic Fe-Mn-Al (Si) alloys. Mater. Design 2020, 187, 108392. [Google Scholar] [CrossRef]
- Lu, S.; Hu, Q.M.; Johansson, B.; Vitos, L. Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels. Acta Mater. 2011, 59, 5728–5734. [Google Scholar] [CrossRef]
- Wei, D.; Li, X.; Heng, W.; Koizumi, Y.; He, F.; Choi, W.-M.; Lee, B.-J.; Kim, H.S.; Kato, H.; Chiba, A. Novel Co-rich high entropy alloys with superior tensile properties. Mater. Res. Lett. 2019, 7, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Seo, Y.; Lee, Y.; Choi, C. Effect of deformation on damping capacity and microstructure of Fe-22%Mn-8%Co alloy. Mater. Trans. 2005, 46, 1274–1277. [Google Scholar] [CrossRef] [Green Version]
- Mizubayashi, H.; Murayama, S.; Tanimoto, H. Feasibility study of high-strength and high damping materials by means of hydrogen internal friction in amorphous alloys. J. Alloy. Compd. 2002, 330, 389–392. [Google Scholar]
C | N | P | S | Mn | Cr | Co | Ni | Si | Ti | Fe |
---|---|---|---|---|---|---|---|---|---|---|
0.01 | 0.1 | 0.01 | 0.01 | 22 | 12 | 4 | 3 | 2 | 0.3 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Lee, M.-S.; Kim, J.-S. Relationship between the Tensile Properties and Damping Capacity of Fe-22%Mn-12%Cr-4%Co-3%Ni-2%Si Alloys by Fatigue Stress. Materials 2021, 14, 7160. https://doi.org/10.3390/ma14237160
Kim J-H, Lee M-S, Kim J-S. Relationship between the Tensile Properties and Damping Capacity of Fe-22%Mn-12%Cr-4%Co-3%Ni-2%Si Alloys by Fatigue Stress. Materials. 2021; 14(23):7160. https://doi.org/10.3390/ma14237160
Chicago/Turabian StyleKim, Jae-Hwan, Myong-Soo Lee, and Jong-Sig Kim. 2021. "Relationship between the Tensile Properties and Damping Capacity of Fe-22%Mn-12%Cr-4%Co-3%Ni-2%Si Alloys by Fatigue Stress" Materials 14, no. 23: 7160. https://doi.org/10.3390/ma14237160
APA StyleKim, J.-H., Lee, M.-S., & Kim, J.-S. (2021). Relationship between the Tensile Properties and Damping Capacity of Fe-22%Mn-12%Cr-4%Co-3%Ni-2%Si Alloys by Fatigue Stress. Materials, 14(23), 7160. https://doi.org/10.3390/ma14237160