Structural and Photoluminescence Investigations of Tb3+/Eu3+ Co-Doped Silicate Sol-Gel Glass-Ceramics Containing CaF2 Nanocrystals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structural Characterization: XRD, TEM, and IR Spectroscopy
3.2. Luminescence Properties of Fabricated Sol-Gel Materials
3.2.1. Determination of Local Symmetry Using Spectroscopy of Eu3+ Ions as Spectral Probes
3.2.2. Studies of Tb3+/Eu3+ Energy Transfer in Sol-Gel Materials with the Variable Tb3+:Eu3+ Molar Ratio
3.2.3. Effect of Changing in the Tb3+:Eu3+ Molar Ratio on Decay Times of the 5D4 (Tb3+)
3.2.4. The Luminescence Decay Analysis of the 5D0 State of Eu3+ Ions
4. Conclusions
- Using spectroscopy of Eu3+ ions as spectral probes, it was found that optically active dopants were preferably segregated inside the lattice of CaF2 nanocrystals during controlled heat-treatment of initial xerogels. Indeed, the 5D0 → 7F1 MD transition occupied the predominant advantage for glass-ceramics, which resulted in an almost six-fold decline in R/O ratio values from approximately 3.70 (for amorphous xerogels) to 0.64 (reported after controlled ceramization);
- The growing R/G ratio (from 0.09 to 0.30 for xerogels, and from 0.14 to 3.76 for glass-ceramics) was observed when the Tb3+:Eu3+ molar ratio changed from 1:0.5 to 1:2. Notably, in glass-ceramics, the emission of Tb3+ ions visibly gradually weakened, while luminescence of Eu3+ ions occupied the predominant advantage, significantly enhancing the reddish-orange emission;
- Performed decay analysis revealed an interesting dependence of decay times on change in the Tb3+:Eu3+ molar ratio, as well as partial segregation of Tb3+ and Eu3+ ions inside CaF2 nanocrystals formed during controlled heat-treatment at 350 °C. Indeed, a well-observable gradual shortening in τ(5D4) lifetimes for Tb3+ ions when the Tb3+:Eu3+ molar ratio changed from 1:0.5 to 1:2 was reported for xerogels (from 1.18 to 0.91 ms) and glass-ceramics (from 4.75 to 1.55 ms), and it was accompanied by an adequate increase in ηET (from 11.9% to 22.9% for xerogels and from 25.7% to 67.4% for glass-ceramics). Higher ηET values for the glass-ceramics resulted from a significant reduction in interionic distances between Tb3+ and Eu3+ ions inside the CaF2 crystal lattice;
- The decay analysis of the 5D0 state (Eu3+) clearly revealed that the partial crystallization induced a remarkable prolongation of τavg(5D0) lifetimes even to 8.59 ms when the Tb3+:Eu3+ molar ratio equals 1:1, however, the further change in Tb3+:Eu3+ caused a slight shortening of decay times (7.94 when Tb3+:Eu3+ = 1:1.5, and 6.96 ms when Tb3+:Eu3+ = 1:2), which indicated a competition between radiative and non-radiative processes.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fischer, S.; Pier, T.; Jüstel, T. On the sensitization of Eu3+ with Ce3+ and Tb3+ by composite structured Ca2LuHf2Al3O12 garnet phosphors for blue LED excitation. Dalton Trans. 2019, 48, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Psuja, P.; Hreniak, D.; Strek, W. Rare-Earth Doped Nanocrystalline Phosphors for Field Emission Displays. J. Nanomater. 2007. [Google Scholar] [CrossRef]
- Kränkel, C.; Marzahl, D.-T.; Moglia, F.; Huber, G.; Metz, P.W. Out of the blue: Semiconductor laser pumped visible rare-earth doped lasers. Laser Photonics Rev. 2016, 10, 548–568. [Google Scholar] [CrossRef] [Green Version]
- Klier, D.T.; Kumke, M.U. Upconversion NaYF4:Yb:Er nanoparticles co-doped with Gd3+ and Nd3+ for thermometry on the nanoscale. RSC Adv. 2015, 5, 67149–67156. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Song, J.; Liu, W.; Xiao, A.; Zhang, L.; Lu, A.; Xiao, Z.; You, W.; Zhang, Q. Preparation and luminescent properties of Tm3+-Dy3+ co-doped phosphate glass for white light-emitting-diode applications. J. Lumin. 2020, 227, 117559. [Google Scholar] [CrossRef]
- Bian, W.; Lin, Y.; Wang, T.; Yu, X.; Qiu, J.; Zhou, M.; Luo, H.; Yu, S.F.; Xu, X. Direct Identification of Surface Defects and Their Influence on the Optical Characteristics of Upconversion Nanoparticles. ACS Nano 2018, 12, 3623–3628. [Google Scholar] [CrossRef]
- Boyer, J.-C.; Cuccia, L.A.; Capobianco, J.A. Synthesis of Colloidal Upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals. Nano Lett. 2007, 7, 847–852. [Google Scholar] [CrossRef]
- Saidi, K.; Dammak, M. Crystal structure, optical spectroscopy and energy transfer properties in NaZnPO4:Ce3+,Tb3+ phosphors for UV-based LEDs. RSC Adv. 2020, 10, 21867–21875. [Google Scholar] [CrossRef]
- Xu, C.; Guan, H.; Song, Y.; An, Z.; Zhang, X.; Zhou, X.; Shi, Z.; Sheng, Y.; Zou, Y.H. Novel highly efficient single-component multi-peak emitting aluminosilicate phosphors co-activated with Ce3+,Tb3+ and Eu2+: Luminescence properties, tunable color, and thermal properties. Phys. Chem. Chem. Phys. 2018, 20, 1591–1607. [Google Scholar] [CrossRef]
- Wang, T.; Yu, H.; Siu, C.K.; Qiu, J.; Xu, X.; Yu, S.F. White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods. ACS Photonics 2017, 4, 1539–1543. [Google Scholar] [CrossRef]
- Hassairi, M.A.; Dammak, M.; Zambou, D.; Chadeyron, G.; Mahiou, R. Red-green-blue upconversion luminescence and energy transfer in Yb3+/Er3+/Tm3+ doped YP5O14 ultraphosphates. J. Lumin. 2017, 181, 393–399. [Google Scholar] [CrossRef]
- Chu, Y.; Ren, J.; Zhang, J.; Peng, G.; Yang, J.; Wang, P.; Yuan, L. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: A potential fiber material for broadband near-infrared fiber amplifiers. Sci. Rep. 2016, 6, 33865. [Google Scholar] [CrossRef]
- Li, B.; Huang, X.; Guo, H.; Zeng, Y. Energy transfer and tunable photoluminescence of LaBWO6:Tb3+, Eu3+ phosphors for near-UV white LEDs. Dyes Pigm. 2018, 150, 67–72. [Google Scholar] [CrossRef]
- Baur, F.; Glocker, F.; Jüstel, T. Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12. J. Mater. Chem. C 2015, 3, 2054–2064. [Google Scholar] [CrossRef] [Green Version]
- Mi, R.; Chen, J.; Liu, Y.-G.; Fang, M.; Mei, L.; Huang, Z.; Wang, B.; Zhaob, C. Luminescence and energy transfer of a color tunable phosphor: Tb3+ and Eu3+ co-doped ScPO4. RSC Adv. 2016, 6, 28887–28894. [Google Scholar] [CrossRef]
- Xu, M.; Ding, Y.; Luo, W.; Wang, L.; Li, S.; Liu, Y. Synthesis, luminescence properties and energy transfer behavior of color-tunable KAlP2O7:Tb3+, Eu3+ phosphors. Opt. Laser Technol. 2020, 121, 105829. [Google Scholar] [CrossRef]
- Xia, Y.; Zou, X.; Zhang, H.; Zhao, M.; Chen, X.; Jia, W.; Su, C.; Shao, J. Luminescence and energy transfer studies of Eu3+-Tb3+ co-doped transparent glass ceramics containing BaMoO4 crystallites. J. Alloys Compd. 2019, 774, 540–546. [Google Scholar] [CrossRef]
- Yao, L.-Q.; Chen, G.-H.; Yang, T.; Cui, S.-C.; Li, Z.-C.; Yang, Y. Energy transfer, tunable emission and optical thermometry in Tb3+/Eu3+ co-doped transparent NaCaPO4 glass ceramics. Ceram. Int. 2016, 42, 13086–13090. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Z.; Zhou, Y.; Huang, P.; Ji, Z. Tb3+/Eu3+: YF3 nanophase embedded glass ceramics: Structural characterization, tunable luminescence and temperature sensing behavior. J. Alloys Compd. 2015, 646, 339–344. [Google Scholar] [CrossRef]
- Kłonkowski, A.M.; Wiczk, W.; Ryl, J.; Szczodrowski, K.; Wileńska, D. A white phosphor based on oxyfluoride nano-glass-ceramics co-doped with Eu3+ and Tb3+: Energy transfer study. J. Alloys Compd. 2017, 724, 649–653. [Google Scholar] [CrossRef]
- Hu, F.; Zhao, Z.; Chi, F.; Wei, X.; Yin, M. Structural characterization and temperature-dependent luminescence of CaF2:Tb3+/Eu3+ glass ceramics. J. Rare Earth. 2017, 35, 536–541. [Google Scholar] [CrossRef]
- Li, X.; Peng, Y.; Wei, X.; Yuan, S.; Zhu, Y.; Chen, D. Energy transfer behaviors and tunable luminescence in Tb3+/Eu3+ codoped oxyfluoride glass ceramics containing cubic/hexagonal NaYF4 nanocrystals. J. Lumin. 2019, 210, 182–188. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Yuan, S.; Liu, S.; Wang, C.; Chen, D. Eu3+-Doped glass ceramics containing NaTbF4 nanocrystals: Controllable glass crystallization, Tb3+-bridged energy transfer and tunable luminescence. J. Mater. Chem. C 2017, 3, 10201–10210. [Google Scholar] [CrossRef]
- Xu, F.; Wei, X.; Jiang, S.; Huang, S.; Qin, Y.; Chen, Y.; Duan, C.-K.; Yin, M. Fabrication and Luminescence Properties of Transparent Glass-Ceramics Containing Eu3+-Doped TbPO4 Nanocrystals. J. Am. Ceram. Soc. 2015, 98, 464–468. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, D.; Qiu, J.; Yang, Y.; Wang, C. Color-tunable luminescence in Eu3+/Tb3+ co-doped oxyfluoride glass and transparent glass-ceramics. J. Alloys Compd. 2015, 629, 310–314. [Google Scholar] [CrossRef]
- Koseva, I.; Tzvetkov, P.; Ivanov, P.; Yordanova, A.; Nikolov, V. Terbium and europium co-doped NaAlSiO4 nano glass-ceramics for LED application. Optik 2017, 137, 45–50. [Google Scholar] [CrossRef]
- Gorni, G.; Velázquez, J.J.; Mosa, J.; Balda, R.; Fernández, J.; Durán, A.; Castro, Y. Transparent glass-ceramics produced by sol-gel: A suitable alternative for photonic materials. Materials 2018, 11, 212. [Google Scholar] [CrossRef] [Green Version]
- Velázquez, J.J.; Mosa, J.; Gorni, G.; Balda, R.; Fernández, J.; Durán, A.; Castro, Y. Novel sol-gel SiO2-NaGdF4 transparent nano-glass-ceramics. J. Non Cryst. Solids 2019, 520, 119447. [Google Scholar] [CrossRef]
- Gorni, G.; Velázquez, J.J.; Mosa, J.; Mather, G.C.; Serrano, A.; Vila, M.; Castro, G.R.; Bravo, D.; Balda, R.; Fernández, J.; et al. Transparent sol-gel oxyfluoride glass-ceramics with high crystalline fraction and study of RE incorporation. Nanomaterials 2019, 9, 530. [Google Scholar] [CrossRef] [Green Version]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Carta, D.; Pickup, D.M.; Knowles, J.C.; Ahmed, I.; Smith, M.E.; Newport, R.J. A structural study of sol–gel and melt-quenched phosphate-based glasses. J. Non Cryst. Solids 2007, 353, 1759–1765. [Google Scholar] [CrossRef]
- Wang, H.; Ye, S.; Liu, T.; Li, S.; Hu, R.; Wang, D. Influence of local phonon energy on quantum efficiency of Tb3+-Yb3+ co-doped glass ceramics containing fluoride nanocrystals. J. Rare Earth. 2014, 33, 201–205. [Google Scholar] [CrossRef]
- Deng, W.; Cheng, J.-S. New transparent glass-ceramics containing large grain Eu3+: CaF2 nanocrystals. Mater. Lett. 2012, 73, 112–114. [Google Scholar] [CrossRef]
- Ryskin, A.I.; Fedorov, P.P.; Bagraev, N.T.; Lushchik, A.; Vasil’chenko, E.; Angervaks, A.E.; Kudryavtseva, I. Stabilization of high-temperature-disorder of fluorine sublattice by quenching in calcium fluoride crystals. J. Fluor. Chem. 2017, 200, 109–114. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Aidilibike, T.; Guo, J.; Di, W.; Qin, W. Pure red upconversion emission from CaF2:Yb3+/Eu3+. J. Lumin. 2017, 185, 247–250. [Google Scholar] [CrossRef]
- Kuznetsov, S.V.; Morozov, O.A.; Gorieva, V.G.; Mayakova, M.N.; Marisov, M.A.; Voronov, V.V.; Yapryntsev, A.D.; Ivanov, V.K.; Nizamutdinov, A.S.; Semashko, V.V.; et al. Synthesis and luminescence studies of CaF2:Yb:Pr solid solutions powders for photonics. J. Fluor. Chem. 2018, 211, 70–75. [Google Scholar] [CrossRef]
- Adusumalli, V.N.K.B.; Koppisetti, H.V.S.R.M.; Mahalingam, V. Ce3+ sensitized bright white light emission from colloidal Ln3+ doped CaF2 nanocrystals for the development of transparent nanocomposites. J. Mater. Chem. C 2016, 4, 2289–2294. [Google Scholar] [CrossRef]
- Akchurin, M.S.; Basiev, T.T.; Demidenko, A.A.; Doroshenko, M.E.; Fedorov, P.P.; Garibin, E.A.; Gusev, P.E.; Kuznetsov, S.V.; Krutov, M.A.; Mironov, I.A.; et al. CaF2:Yb laser ceramics. Opt. Mater. 2013, 35, 444–450. [Google Scholar] [CrossRef]
- Liu, G.; Sun, Z.; Fu, Z.; Ma, L.; Wang, X. Temperature sensing and bio-imaging applications based on polyethylene/CaF2 nanoparticles with upconversion fluorescence. Talanta 2017, 169, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Wang, Y.; Teng, F.; Dong, H.; Chen, L.; Mu, J.; Sun, Q.; Fan, J.; Hu, X.; Miao, H. Down-conversion emission of Ce3+-Tb3+ co-doped CaF2 hollow spheres and application for solar cells. Mater. Res. Express 2018, 5, 036206. [Google Scholar] [CrossRef]
- Pawlik, N.; Szpikowska-Sroka, B.; Goryczka, T.; Pisarski, W.A. Sol-Gel Glass-Ceramic Materials Containing CaF2:Eu3+ Fluoride Nanocrystals for Reddish-Orange Photoluminescence Applications. Appl. Sci. 2019, 9, 5490. [Google Scholar] [CrossRef] [Green Version]
- Pawlik, N.; Szpikowska-Sroka, B.; Goryczka, T.; Pisarski, W.A. Photoluminescence investigation of sol-gel glass-ceramic materials containing SrF2:Eu3+ nanocrystals. J. Alloys Compd. 2019, 810, 151935. [Google Scholar] [CrossRef]
- Pawlik, N.; Szpikowska-Sroka, B.; Pisarska, J.; Goryczka, T.; Pisarski, W.A. Reddish-Orange Luminescence from BaF2:Eu3+ Fluoride Nanocrystals Dispersed in Sol-Gel Materials. Materials 2019, 12, 3735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlik, N.; Szpikowska-Sroka, B.; Pisarski, W.A. Energy Transfer Study on Tb3+/Eu3+ Co-Activated Sol-Gel Glass-Ceramic Materials Containing MF3 (M = Y, La) Nanocrystals for NUV Optoelectronic Devices. Materials 2020, 13, 2522. [Google Scholar] [CrossRef]
- Yanes, A.C.; del-Castillo, J.; Ortiz, E. Energy transfer and tunable emission in BaGdF5:RE3+ (RE = Ce, Tb, Eu) nano-glass-ceramics. J. Alloys Compd. 2019, 773, 1099–1107. [Google Scholar] [CrossRef]
- Pawlik, N.; Szpikowska-Sroka, B.; Goryczka, T.; Pisarski, W.A. Spectroscopic Properties of Eu3+ Ions in Sol-Gel Materials Containing Calcium Fluoride Nanocrystals. Phys. Status Solidi B 2019, 257, 1900478. [Google Scholar] [CrossRef]
- Pawlik, N.; Szpikowska-Sroka, B.; Pietrasik, E.; Goryczka, T.; Pisarski, W.A. Structural and luminescence properties of silica powders and transparent glass-ceramics containing LaF3:Eu3+ nanocrystals. J. Am. Ceram. Soc. 2018, 101, 4654–4668. [Google Scholar] [CrossRef]
- Holder, C.F.; Schaak, R.E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 2019, 13, 7359–7365. [Google Scholar] [CrossRef] [Green Version]
- Zak, A.K.; Majid, W.H.A.; Abrishami, M.E.; Yousefi, R. X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 2011, 13, 251–256. [Google Scholar] [CrossRef]
- Withers, S.H.; Peale, R.E.; Schulte, A.F.; Braunstein, G.; Beck, K.M.; Hess, W.P.; Reeder, R.J. Broad distribution of crystal-field environments for Nd3+ in calcite. Phys. Chem. Miner. 2003, 30, 440–448. [Google Scholar] [CrossRef]
- Qin, D.; Tang, W. Energy transfer and multicolor emission in single-phase Na5Ln(WO4)4-z(MoO4)z:Tb3+,Eu3+ (Ln = La, Y, Gd) phosphors. RSC Adv. 2016, 6, 45376–45385. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, W.; Zhou, L.; Xu, H.; Xia, Q.; Liu, L.; Liu, X.; Li, L. F--Eu3+ charge transfer energy and local crystal environment in Eu3+ doped calcium fluoride. Ceram. Int. 2017, 43, 13089–13093. [Google Scholar] [CrossRef]
- Innocenzi, P. Infrared spectroscopy of sol-gel derived silica-based films: A spectra-microstructure overview. J. Non Cryst. Solids 2003, 316, 309–319. [Google Scholar] [CrossRef]
- Osswald, J.; Fehr, K.T. FTIR spectroscopic study on liquid silica solutions and nanoscale particle size determination. J. Mater. Sci. 2006, 41, 1335–1339. [Google Scholar] [CrossRef]
- Kreienborg, N.M.; Merten, C. How to treat C-F stretching vibrations? A vibrational CD study on chiral fluorinated molecules. Phys. Chem. Chem. Phys. 2019, 21, 3506–3511. [Google Scholar] [CrossRef]
- Aguiar, H.; Serra, J.; González, P.; León, B. Structural study of sol-gel silicate glasses by IR and Raman spectroscopies. J. Non Cryst. Solids 2009, 355, 475–480. [Google Scholar] [CrossRef]
- Song, C.; Dong, X. Preparation and Characterization of Tetracomponent ZnO/SiO2/SnO2/TiO2 Composite Nanofibers by Electrospinning. Adv. Chem. Eng. 2012, 2, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhu, T.; Deng, Z.; Zhang, Y.; Jiao, F.; Zheng, H. Preparation of Cu-SiO2 composite aerogel by ambient drying and the influence of synthesizing conditions on the structure of the aerogel. Sci. Bull. 2011, 56, 685–690. [Google Scholar] [CrossRef] [Green Version]
- Gökçe, M.; Şentürk, U.; Uslu, D.K.; Burgaz, G.; Şahin, Y.; Gökçe, A.G. Investigation of europium concentration dependence on the luminescent properties of borogermanate glasses. J. Lumin. 2017, 192, 263–268. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Pisarski, W.A.; Pisarska, J.; Zur, L.; Goryczka, T. Structural and optical aspects for Eu3+ and Dy3+ ions in heavy metal glasses based on PbO-Ga2O3-XO2 (X = Te, Ge, Si). Opt. Mater. 2013, 35, 1051–1056. [Google Scholar] [CrossRef]
- Hurenkamp, J.H.; de Jong, J.J.D.; Browne, W.R.; van Esch, J.H.; Feringa, B.L. Tuning energy transfer in switchable donor-acceptor systems. Org. Biomol. Chem. 2008, 6, 1268–1277. [Google Scholar] [CrossRef] [Green Version]
- Sołtys, M.; Pisarska, J.; Leśniak, M.; Sitarz, M.; Pisarski, W.A. Structural and spectroscopic properties of lead phosphate glasses doubly doped with Tb3+ and Eu3+ ions. J. Mol. Struct. 2018, 1163, 418–427. [Google Scholar] [CrossRef]
- Tomina, V.V.; Stolyarchuk, N.V.; Katelnikovas, A.; Misevicius, M.; Kanuchova, M.; Kareiva, A.; Beganskienė, A.; Melnyk, I.V. Preparation and luminescence properties of europium(III)-loaded aminosilica spherical particles. Coll. Surf. A 2021, 608, 125552. [Google Scholar] [CrossRef]
- Żur, L.; Pisarska, J.; Pisarski, W.A. Terbium -doped heavy metal glasses for green luminescence. J. Rare Earth. 2011, 29, 1198–1200. [Google Scholar] [CrossRef]
- Bredol, M.; Gutzov, S. Effect of germanium-codoping on the luminescence of terbium doped silica xerogel. Opt. Mater. 2002, 20, 233–239. [Google Scholar] [CrossRef]
- Szpikowska-Sroka, B.; Pawlik, N.; Goryczka, T.; Bańczyk, M.; Pisarski, W.A. Influence of activator concentration on green-emitting Tb3+-doped materials derived by sol-gel method. J. Lumin. 2017, 188, 400–408. [Google Scholar] [CrossRef]
- Parchur, A.K.; Prasad, A.I.; Ansari, A.A.; Rai, S.B.; Ningthoujam, R.S. Luminescence properties of Tb3+-doped CaMoO4 nanoparticles: Annealing effect, polar medium dispersible, polymer film and core-shell formation. Dalton Trans. 2012, 41, 11032–11045. [Google Scholar] [CrossRef] [PubMed]
- Secu, C.E.; Bartha, C.; Polosan, S.; Secu, M. Thermally activated conversion of a silicate gel to an oxyfluoride glass ceramic: Optical study using Eu3+ probe ion. J. Lumin. 2014, 146, 539–543. [Google Scholar] [CrossRef]
- Van Dijk, J.M.F.; Schuurmans, M.F.H. On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions. J. Chem. Phys. 1983, 78, 5317–5323. [Google Scholar] [CrossRef]
- Xia, Z.; Zhuang, J.; Liao, L. Novel red-emitting Ba2Tb(BO3)2Cl:Eu phosphor with efficient energy transfer for potential application in white light-emitting diodes. Inorg. Chem. 2012, 51, 7202–7209. [Google Scholar] [CrossRef]
- Gopi, S.; Jose, S.K.; Sreeja, E.; Manasa, P.; Unnikrishnan, N.V.; Cyriac, J.; Biju, P.R. Tunable green to red emission via Tb sensitized energy transfer in Tb/Eu co-doped alkali fluoroborate glass. J. Lumin. 2017, 192, 1288–1294. [Google Scholar] [CrossRef]
- Podhorodecki, A.; Banski, M.; Misiewicz, J.; Afzaal, M.; O’Brien, P.; Chad, D.; Wang, X. Multicolor light emitters based on energy exchange between Tb and Eu ions co-doped into ultrasmall β-NaYF4 nanocrystals. J. Mater. Chem. 2012, 22, 5356–5361. [Google Scholar] [CrossRef]
- Qin, X.; Shen, L.; Liang, L.; Han, S.; Yi, Z.; Liu, X. Suppression of Defect-Induced Quenching via Chemical Potential Tuning: A Theoretical Solution for Enhancing Lanthanide Luminescence. J. Phys. Chem. C 2019, 123, 11151–11161. [Google Scholar] [CrossRef]
- Nicoara, I.; Munteanu, M.; Preda, E.; Stef, M. Some dielectric and optical properties of ErF3-doped CaF2 crystals. J. Cryst. Growth 2008, 310, 2020–2025. [Google Scholar] [CrossRef]
- Trejo-García, P.M.; Palomino-Merino, R.; De la Cruz, J.; Espinosa, J.E.; Aceves, R.; Moreno-Barbosa, E.; Moreno, O.P. Luminescent Properties of Eu3+-Doped Hybrid SiO2-PMMA Material for Photonic Applications. Micromachines 2018, 9, 441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Meng, Q.; May, P.S.; Berry, M.T.; Lin, C. Sensitization of Eu3+ luminescence in Eu:YPO4 nanocrystals. J. Phys. Chem. C 2013, 117, 5953–5962. [Google Scholar] [CrossRef]
- Werts, M.H.V.; Jukes, R.T.F.; Verhoeven, J.W. The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys. Chem. Chem. Phys. 2002, 4, 1542–1548. [Google Scholar] [CrossRef]
- Çetin, N.E.; Korkmaz, Ş.; Elmas, S.; Ekem, N.; Pat, S.; Balbağ, M.Z.; Tarhan, E.; Temel, S.; Özmumcu, M. The structural, optical and morphological properties of CaF2 thin films by using Thermionic Vacuum Arc (TVA). Mater. Lett. 2013, 91, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Rehmer, A.; Scheurell, K.; Kemnitz, E. Formation of nanoscopic CaF2 via a fluorolytic sol- gel process for antireflective coatings. J. Mater. Chem. C 2015, 3, 1716–1723. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, H.; Zhang, Y.; Zheng, Y.; Xu, Z.; Liu, R. Structure and luminescent properties of electrodeposited Eu3+-doped CaF2 thin films. Thin Solid Film 2014, 562, 478–484. [Google Scholar] [CrossRef]
Xerogel | τ(5D4) (ms) | ηET (%) | R/G |
---|---|---|---|
XG1Tb | 1.18 | - | 0.09 |
XG1Tb0.5Eu | 1.04 | 11.9 | 0.15 |
XG1Tb1Eu | 1.01 | 14.4 | 0.17 |
XG1Tb1.5Eu | 0.96 | 18.6 | 0.26 |
XG1Tb2Eu | 0.91 | 22.9 | 0.30 |
Glass-Ceramic | τm(5D4) (ms) | τavg(5D4) (ms) | ηET (%) | R/G |
---|---|---|---|---|
GC1Tb | 1.40 (τ1) 5.67 (τ2) | 4.75 | - | 0.14 |
GC1Tb0.5Eu | 1.32 (τ1) 4.74 (τ2) | 3.75 | 25.7 | 0.80 |
GC1Tb1Eu | 0.62 (τ1) 2.99 (τ2) | 2.59 | 45.5 | 1.60 |
GC1Tb1.5Eu | 0.37 (τ1) 2.08 (τ2) | 1.92 | 59.6 | 2.47 |
GC1Tb2Eu | 0.20 (τ1) 1.66 (τ2) | 1.55 | 67.4 | 3.76 |
Xerogel | τ(5D0) (ms) |
---|---|
XG1Tb0.5Eu | 0.37 |
XG1Tb1Eu | 0.43 |
XG1Tb1.5Eu | 0.44 |
XG1Tb2Eu | 0.45 |
Glass-Ceramic | λexc = 394 nm | |
---|---|---|
τm(5D0) (ms) | τavg(5D0) (ms) | |
GC1Tb0.5Eu | 0.98 (τ1) 9.04 (τ2) | 8.40 |
GC1Tb1Eu | 1.33 (τ1) 9.52 (τ2) | 8.59 |
GC1Tb1.5Eu | 1.34 (τ1) 8.79 (τ2) | 7.94 |
GC1Tb2Eu | 1.35 (τ1) 7.76 (τ2) | 6.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlik, N.; Szpikowska-Sroka, B.; Goryczka, T.; Pisarska, J.; Pisarski, W.A. Structural and Photoluminescence Investigations of Tb3+/Eu3+ Co-Doped Silicate Sol-Gel Glass-Ceramics Containing CaF2 Nanocrystals. Materials 2021, 14, 754. https://doi.org/10.3390/ma14040754
Pawlik N, Szpikowska-Sroka B, Goryczka T, Pisarska J, Pisarski WA. Structural and Photoluminescence Investigations of Tb3+/Eu3+ Co-Doped Silicate Sol-Gel Glass-Ceramics Containing CaF2 Nanocrystals. Materials. 2021; 14(4):754. https://doi.org/10.3390/ma14040754
Chicago/Turabian StylePawlik, Natalia, Barbara Szpikowska-Sroka, Tomasz Goryczka, Joanna Pisarska, and Wojciech A. Pisarski. 2021. "Structural and Photoluminescence Investigations of Tb3+/Eu3+ Co-Doped Silicate Sol-Gel Glass-Ceramics Containing CaF2 Nanocrystals" Materials 14, no. 4: 754. https://doi.org/10.3390/ma14040754
APA StylePawlik, N., Szpikowska-Sroka, B., Goryczka, T., Pisarska, J., & Pisarski, W. A. (2021). Structural and Photoluminescence Investigations of Tb3+/Eu3+ Co-Doped Silicate Sol-Gel Glass-Ceramics Containing CaF2 Nanocrystals. Materials, 14(4), 754. https://doi.org/10.3390/ma14040754