Comparison of Tooth- and Bone-Borne Appliances on the Stress Distributions and Displacement Patterns in the Facial Skeleton in Surgically Assisted Rapid Maxillary Expansion—A Finite Element Analysis (FEA) Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Design of the Facial Skeleton Model for the Finite Element Analysis
2.2. Design of the Bone- and Tooth-Borne Appliances
2.3. Models of Osteotomy of the Midface
3. Results
3.1. Stresses Reduced According to Huber’s Hypothesis
3.2. Displacements of Selected Facial Skeleton Structures along the X-, Y- and Z-Axes
3.2.1. Displacements of Selected Facial Skeleton Structures along the X-Axis
3.2.2. Displacements of Selected Facial Skeleton Structures along the Y-Axis
3.2.3. Displacements of Selected Facial Skeleton Structures along the Z-Axis
4. Discussion
5. Conclusions
- An absence of surgical support for maxillary expansion significantly increased the stress reduction according to Huber’s hypothesis in the entire facial skeleton in patients whose bone growth is complete, without affecting displacements in the buccolingual dimension (X-axis).
- Higher levels of stresses and covered areas of the facial skeleton were found for the bone-borne appliance, especially in the model without an osteotomy and in models without an incision in the palatal suture.
- Only in the case of a complete separation of the maxilla at all its junctions, as well as an osteotomy of the palatal suture, the type of expander (tooth-borne vs. bone-borne) had no significant effect on the distribution of the reduced stresses in the facial skeleton.
- Compared to the tooth-borne appliance, the bone-borne expander allowed for a reduced load on the periodontium in all the modelled osteotomy variants and in the model without surgical intervention.
- Compared to the tooth-borne appliance, the bone-borne appliance exerted a bone expansion effect on the models with a full osteotomy, as confirmed by the displacements along the X-axis for selected variables.
- A transpalatal distraction may be an effective method of treating maxillary constriction in adult patients in the case of total separation of the maxilla, combined with palatal suture separation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mommaerts, M. Transpalatal distraction as a method of maxillary expansion. Br. J. Oral Maxillofac. Surg. 1999, 37, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Adkins, M.D.; Nanda, R.S.; Currier, G.F. Arch perimeter changes on rapid palatal expansion. Am. J. Orthod. Dentofac. Orthop. 1990, 97, 194–199. [Google Scholar] [CrossRef]
- Proffit, W.; Fields, H.; Larson, B.; Sarver, D. Contemporary Orthodontics, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Moss, M.L. Neurotrophic Processes in Orofacial Growth. J. Dent. Res. 1971, 50, 1492–1494. [Google Scholar] [CrossRef] [PubMed]
- Kyrkanides, S.; Moore, T.; Miller, J.-N.H.; Tallents, R.H. Melvin Moss’ function matrix theory—Revisited. Orthod. Waves 2011, 70, 1–7. [Google Scholar] [CrossRef]
- Dobrzynski, M.; Miśków, K.; Dowgierd, K. Selected palatal suture expansion techniques in the treatment of transverse maxillary narrowings—Literature review. Pol. Ann. Med. 2013, 20, 160–163. [Google Scholar] [CrossRef]
- Jafari, A.; Shetty, K.S.; Kumar, M. Study of stress distribution and displacement of various craniofacial structures following application of transverse orthopedic forces—A three-dimensional FEM study. Angle Orthod. 2003, 73, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Mathur, R. Maxillary Expansion. Int. J. Clin. Pediatr. Dent. 2010, 3, 139–146. [Google Scholar] [CrossRef]
- Haluk, İ.; Serhat, Ö. Semirapid Maxillary Expansion—A Study of Long-Term Transverse Effects in Older Adolescents and Adults. Angle Orthod. 2004, 74, 71–78. [Google Scholar]
- Baydas, B.; Yavuz, I.; Uslu, H.; Dagsuyu, I.M.; Ceylan, I. Nonsurgical rapid maxillary expansion effects on craniofacial structures in young adult females. A bone scintigraphy study. Angle Orthod. 2006, 76, 759–767. [Google Scholar] [CrossRef]
- Han, U.A.; Kim, Y.; Park, J.U. Three-dimensional finite element analysis of stress distribution and displacement of the maxilla following surgically assisted rapid maxillary expansion. J. Cranio-Maxillofac. Surg. 2009, 37, 145–154. [Google Scholar] [CrossRef]
- Schlegel, K.A.; Kinner, F.; Schlegel, K.D. The anatomic basis for palatal implants in orthodontics. Int. J. Adult Orthod. Orthognath. Surg. 2002, 17, 133–139. [Google Scholar] [CrossRef]
- Bell, W.H.; Epker, B.N. Surgical-orthodontic expansion of the maxilla. Am. J. Orthod. 1976, 70, 517–528. [Google Scholar] [CrossRef]
- Epker, B.E.; Stella, J.P.; Fish, L.C. Dentofacial Deformities. Integrated Orthodontic and Surgical Corrections, 2nd ed.; Mosby: St. Louis, MI, USA, 1995. [Google Scholar]
- Sicher, H. Oral Anatomy; Mosby: St. Louis, MI, USA, 1963. [Google Scholar] [CrossRef]
- Lines, P.A. Adult rapid maxillary expansion with corticotomy. Am. J. Orthod. 1975, 67, 44–56. [Google Scholar] [CrossRef]
- Koudstaal, M.; Poort, L.; Van Der Wal, K.; Wolvius, E.; Prahl-Andersen, B.; Schulten, A. Surgically assisted rapid maxillary expansion (SARME): A review of the literature. Int. J. Oral Maxillofac. Surg. 2005, 34, 709–714. [Google Scholar] [CrossRef]
- Kennedy, J.W.; Bell, W.H.; Kimbrough, O.; James, W.B. Osteotomy as an adjunct to rapid maxillary expansion. Am. J. Orthod. 1976, 70, 123–137. [Google Scholar] [CrossRef]
- Gerlach, K.L.; Zahl, C. Transversal Palatal Expansion Using a Palatal Distractor. J. Orofac. Orthop./Fortschr. der Kieferorthopädie 2003, 64, 443–449. [Google Scholar] [CrossRef]
- Holberg, C.; Rudzki-Janson, I. Stresses at the cranial base induced by rapid maxillary expansion. Angle Orthod. 2006, 76, 543–550. [Google Scholar]
- Chrcanovic, B.R.; Luis, A.; Custódio, A.L. Orthodontic or surgically rapid maxillary expansion. Oral. Maxillofac. Surg. 2009, 13, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Sangsari, A.H.; Sadr-Eshkevari, P.; Al-Dam, A.; Friedrich, R.E.; Freymiller, E.; Rashad, A. Surgically Assisted Rapid Palatomaxillary Expansion With or Without Pterygomaxillary Disjunction: A Systematic Review and Meta-Analysis. J. Oral. Maxillofac. Surg. 2016, 74, 338–348. [Google Scholar] [CrossRef]
- Brunetto, D.P.; Sant’Anna, E.F.; Machado, A.W.; Moon, W. Non-surgical treatment of transverse deficiency in adults using Microimplant-assisted Rapid Palatal Expansion (MARPE). Dent. Press J. Orthod. 2017, 22, 110–125. [Google Scholar] [CrossRef] [Green Version]
- Zawiślak, E.; Gerber, H.; Nowak, R.; Kubiak, M. Dental and Skeletal Changes after Transpalatal Distraction. BioMed Res. Int. 2020, 2020, 5814103. [Google Scholar] [CrossRef] [Green Version]
- Barber, A.F.; Sims, M.R. Rapid maxillary expansion and external root resorption in man: A scanning electron microscope study. Am. J. Orthod. 1981, 79, 630–652. [Google Scholar] [CrossRef]
- Couégnat, G.; Fok, S.L.; Cooper, J.E.; Qualtrough, A.J. Structural optimization of dental restorations using the principle of adaptive growth. Dent. Mater. 2006, 22, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Tanne, K.; Sakuda, M.; Burstone, C.J. Three-dimensional finite element analysis for stress in the periodontal tissue by orthodontic forces. Am. J. Orthod. Dentofac. Orthop. 1987, 92, 499–505. [Google Scholar] [CrossRef]
- Vásquez, M.; Calao, E.; Becerra, F.; Ossa, J.; Enríquez, C.; Fresneda, E. Initial Stress Differences Between Sliding and Sectional Mechanics with an Endosseous Implant as Anchorage. A 3-Dimensional Finite Element Analysis. Angle Orthod. 2001, 71, 247–256. [Google Scholar] [PubMed]
- Handelman, C.S.; Wang, W.; BeGole, E.A.; Haas, A.J. Nonsurgical rapid maxillary expansion in adults: Report of 47 cases using the Haas expander. Angle Orthod. 2000, 70, 129–144. [Google Scholar]
- Reinbacher, K.; Wallner, J.; Pau, M.; Feichtinger, M.; Kärcher, H.; Quehenberger, F.; Zemann, W. Surgically assisted rapid maxillary expansion: Feasibility of not releasing the nasal septum. Int. J. Oral Maxillofac. Surg. 2013, 42, 321–325. [Google Scholar] [CrossRef]
- Seeberger, R.; Kater, W.; Schulte-Geers, M.; Thiele, O.; Davids, R.; Hofele, C.; Freier, K. Chirurgisch unterstützte transversale Oberkieferdistraktion. HNO 2010, 58, 806–811. [Google Scholar] [CrossRef]
- Northway, W.M.; Meade, J.B., Jr. Surgically assisted rapid maxillary expansion: A comparison of technique, response, and stability. Angle Orthod. 1997, 67, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Lanigan, D.T.; Romanchuk, K.; Olson, C.K. Ophthalmic complications associated with orthognathic surgery. J. Oral Maxillofac. Surg. 1993, 51, 480–494. [Google Scholar] [CrossRef]
- Barone, T.R.; Cahali, M.B.; Vasconcelos, C. A comparison of tooth-borne and bone-anchored expansion devices in SARME. Oral Maxillofac. Surg. 2020, 24, 181–187. [Google Scholar] [CrossRef]
- Muñoz-Pereira, M.; Haas-Junior, O.; Meirelles, L.D.S.; Machado-Fernández, A.; Guijarro-Martínez, R.; Hernández-Alfaro, F.; De Oliveira, R.; Pagnoncelli, R. Stability and surgical complications of tooth-borne and bone-borne appliances in surgical assisted rapid maxillary expansion: A systematic review. Br. J. Oral Maxillofac. Surg. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lisiak-Myszke, M.; Marciniak, D.; Bieliński, M.; Sobczak, H.; Garbacewicz, Ł.; Drogoszewska, B. Application of Finite Element Analysis in Oral and Maxillofacial Surgery—A Literature Review. Materials 2020, 13, 3063. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.S.; Nandlal, B.; Saikrishna, D.; Mallesh, G. Finite Element Analysis: A Maxillofacial Surgeon’s Perspective. J. Maxillofac. Oral Surg. 2011, 11, 206–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herford, A.S.; Miller, M.; Lauritano, F.; Cervino, G.; Signorino, F.; Maiorana, C. The use of virtual surgical planning and navigation in the treatment of orbital trauma. Chin. J. Traumatol. 2017, 20, 9–13. [Google Scholar] [CrossRef]
- Kiliç, N.; Oktay, H. Effects of rapid maxillary expansion on nasal breathing and some noso-respiratory and breathing problems in growing children: A literature review. Int. J. Ped. Otorhinolaryng. 2008, 72, 1595–1601. [Google Scholar] [CrossRef]
- Laudemann, K.; Santo, G.; Revilla, C.; Harth, M.; Kopp, S.; Sader, R.A.; Landes, C.A. Assessment of Surgically Assisted Rapid Maxillary Expansion Regarding Pterygomaxillary Disjunction Using Thin Volume-Rendering Technique: In Variance Analysis and in Reliability, Accuracy, and Validity. J. Oral Maxillofac. Surg. 2011, 69, 2631–2643. [Google Scholar] [CrossRef] [PubMed]
- Günbay, T.; Akay, M.C.; Günbay, S.; Aras, A.; Koyuncu, B.Ö.; Sezer, B. Transpalatal Distraction Using Bone-Borne Dis-tractor: Clinical Observations and Dental and Skeletal Changes. J. Oral. Maxillofac. Surg. 2008, 66, 2503–2514. [Google Scholar] [CrossRef]
- Bishara, E.; Ortho, D.; Staley, R.N. Maxillary expansion: Clinical implications. Am. J. Orthod. Dentofac. Orthop. 1987, 91, 3–14. [Google Scholar] [CrossRef]
- Baysal, A.; Karadede, I.; Hekimoglu, S.; Ucar, F.; Ozer, T.; Veli, I.; Uysal, T. Evaluation of root resorption folowing rapid maxillary expansion using cone-beam computed tomography. Angle Orthod. 2012, 82, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Haas, A.J. Long-term posttreatment evaluation of rapid palatal expansion. Angle Orthod. 1980, 50, 189–217. [Google Scholar] [PubMed]
- Zawiślak, E.; Olejnik, A.; Frątczak, R.; Nowak, R. Impact of Osteotomy in Surgically Assisted Rapid Maxillary Expansion Using Tooth-Borne Appliance on the Formation of Stresses and Displacement Patterns in the Facial Skeleton—A Study Using Finite Element Analysis (FEA). Appl. Sci. 2020, 10, 8261. [Google Scholar] [CrossRef]
Variable | Young’s Modulus (MPa) | Poisson’s Ratio |
---|---|---|
Compact bone | 13,700 | 0.26 |
Cancellous bone | 1370 | 0.3 |
Enamel | 80,000 | 0.26 |
Dentin | 20,000 | 0.15 |
Stainless steel | 200,000 | 0.3 |
Model | Tooth-Borne Type Appliance | Bone-Borne Type Appliance |
---|---|---|
Model 1 | No surgery | |
Model 2 | Palatal suture osteotomy | |
Model 3 | Le Fort I osteotomy without a PMJ separation | |
Model 4 | Le Fort I osteotomy with a PMJ separation | |
Model 5 | Palatal suture + Le Fort I osteotomy without a PMJ separation | |
Model 6 | Palatal suture + Le Fort I osteotomy with a PMJ separation |
Anatomical Structures | Tooth-Borne | Bone-Borne | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | |
Nasofrontal suture | 2.2 | 5.5 | 1.1 | 1.1 | 4.4 | 2.2 | 3.3 | 5.5 | 3.3 | 2.2 | 5.5 | 2.2 |
Zygomaticomaxillary suture | 3.3 | 5.5 | 4.4 | 1.1 | 4.4 | 2.2 | >10 | 5.5 | 3.3 | 1.1 | 4.4 | 2.2 |
Arcus superciliaris—brow ridge | 2.2 | 8.8 | 2.2 | 2.2 | 7.7 | 3.3 | 5.5 | >10 | 5.5 | 3.3 | 10 | 3.3 |
Zygomaticofrontal suture | 4.4 | 7.7 | 3.3 | 2.2 | 7.7 | 3.3 | 3.3 | 6.6 | 7.7 | 3.3 | 4.4 | 3.3 |
Palatal suture anterior region | >25 | 1.1 | >25 | >25 | 1.1 | 1.1 | >25 | 1.1 | >25 | >25 | 1.1 | 1.1 |
Palatal suture posterior region | 13.8 | 1.1 | 13.8 | 13.8 | 1.1 | 1.1 | >25 | 1.1 | >25 | >25 | 1.1 | 1.1 |
Supraorbital margin | 2.2 | 4.4 | 2.2 | 1.1 | 4.4 | 2.2 | 3.3 | 5.5 | 3.3 | 2.2 | 5.5 | 2.2 |
Infraorbital margin | 4.4 | 5.5 | 2.2 | 1.1 | 7.7 | 2.2 | >10 | 8.8 | 7.7 | 2.2 | 6.6 | 2.2 |
Apertura piriformis—the lowest point | 5.5 | 1.1 | >10 | >10 | 1.1 | 1.1 | >10 | 1.1 | >10 | >10 | 1.1 | 1.1 |
Anterior wall of the maxillary sinus | >10 | 4.4 | 7.7 | 1.1 | 3.3 | 2.2 | >10 | 5.5 | >10 | 2.2 | 7.7 | 3.3 |
Zygomaticoalveolar crest | >10 | >10 | 5.5 | 3.3 | 5.5 | 3.3 | >10 | >10 | >10 | >10 | 5.5 | 3.3 |
Processus alveolaris of the maxillae regio incisors and canine | 7.7 | 1.1 | 10 | >10 | 1.1 | 1.1 | >10 | 1.1 | >10 | >10 | 1.1 | 1.1 |
Processus alveolaris of the maxillae regio premolars | >10 | 8.8 | >10 | >10 | 7.7 | 3.3 | >10 | 5.5 | >10 | >10 | 3.3 | 3.3 |
Processus alveolaris of the maxillae regio molars | 5.5 | 1.1 | 5.5 | 7.7 | 3.3 | 3.3 | >10 | 5.5 | 7.7 | >10 | 3.3 | 2.2 |
Crown/Collum 5th maxilla tooth | >10 | 5.5 | >10 | >10 | 5.5 | 4.4 | 3.3 | 1.1 | 5.5 | 5.5 | 1.1 | 1.1 |
Axis | Variable | Tooth-Borne | Bone-Borne | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | ||
X | Mesial incisal angle of maxillary tooth 1 | +0.04 | +0.31 | +0.04 | +0.04 | +0.31 | 0.4 | 0.04 | 0.4 | 0.04 | 0.04 | 0.4 | >0.4 |
Buccal cusp tip of maxillary tooth 5 | 0.04 | 0.22 | 0.04 | 0.13 | 0.31 | 0.31 | 0.13 | 0.31 | 0.13 | 0.22 | 0.31 | 0.4 | |
Posterolateral surface of the maxilla | 0.04 | 0.22 | 0.04 | 0.04 | 0.22 | 0.22 | 0.13 | 0.22 | 0.13 | 0.13 | 0.22 | 0.31 | |
Apertura piriformis—the lowest point | 0.04 | 0.22 | 0.04 | 0.04 | 0.22 | 0.22 | 0.13 | 0.22 | 0.13 | 0.13 | 0.22 | 0.4 | |
Y | Mesial incisal angle of maxillary tooth 1 | −0.05 | 0.05 | −0.05 | −0.05 | 0.05 | 0.07 | >−0.1 | 0.07 | >−0.1 | >−0.1 | 0.07 | 0.1 |
Buccal cusp tip of maxillary tooth 5 | 0.01 | 0.03 | 0.01 | 0.03 | 0.03 | 0.01 | 0.01 | 0.05 | 0.03 | 0.07 | 0.05 | 0.01 | |
Posterolateral surface of the maxilla | 0.01 | 0.03 | 0.03 | 0.05 | 0.03 | −0.01 | 0.01 | 0.03 | 0.03 | 0.05 | 0.03 | −0.03 | |
Apertura piriformis—the lowest point | −0.03 | 0.03 | −0.03 | −0.03 | 0.03 | 0.05 | −0.05 | 0.05 | −0.05 | −0.03 | 0.03 | 0.05 | |
Z | Mesial incisal angle of maxillary tooth 1 | −0.03 | 0.01 | −0.03 | −0.03 | −0.05 | −0.05 | −0.07 | −0.05 | −0.07 | −0.03 | −0.05 | −0.03 |
Buccal cusp tip of maxillary tooth 5 | −0.03 | 0.07 | 0.01 | 0.03 | 0.07 | 0.05 | 0.01 | 0.07 | 0.03 | 0.1 | 0.05 | 0.05 | |
Posterolateral surface of the maxilla | 0.03 | 0.07 | 0.03 | 0.07 | 0.07 | 0.07 | 0.03 | 0.07 | 0.05 | >0.1 | 0.1 | 0.07 | |
Apertura piriformis—the lowest point | −0.03 | 0.01 | −0.03 | −0.03 | −0.05 | −0.05 | −0.05 | −0.03 | −0.05 | −0.05 | −0.05 | −0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, R.; Olejnik, A.; Gerber, H.; Frątczak, R.; Zawiślak, E. Comparison of Tooth- and Bone-Borne Appliances on the Stress Distributions and Displacement Patterns in the Facial Skeleton in Surgically Assisted Rapid Maxillary Expansion—A Finite Element Analysis (FEA) Study. Materials 2021, 14, 1152. https://doi.org/10.3390/ma14051152
Nowak R, Olejnik A, Gerber H, Frątczak R, Zawiślak E. Comparison of Tooth- and Bone-Borne Appliances on the Stress Distributions and Displacement Patterns in the Facial Skeleton in Surgically Assisted Rapid Maxillary Expansion—A Finite Element Analysis (FEA) Study. Materials. 2021; 14(5):1152. https://doi.org/10.3390/ma14051152
Chicago/Turabian StyleNowak, Rafał, Anna Olejnik, Hanna Gerber, Roman Frątczak, and Ewa Zawiślak. 2021. "Comparison of Tooth- and Bone-Borne Appliances on the Stress Distributions and Displacement Patterns in the Facial Skeleton in Surgically Assisted Rapid Maxillary Expansion—A Finite Element Analysis (FEA) Study" Materials 14, no. 5: 1152. https://doi.org/10.3390/ma14051152
APA StyleNowak, R., Olejnik, A., Gerber, H., Frątczak, R., & Zawiślak, E. (2021). Comparison of Tooth- and Bone-Borne Appliances on the Stress Distributions and Displacement Patterns in the Facial Skeleton in Surgically Assisted Rapid Maxillary Expansion—A Finite Element Analysis (FEA) Study. Materials, 14(5), 1152. https://doi.org/10.3390/ma14051152