Preparation of Synthetic Zeolites from Coal Fly Ash by Hydrothermal Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coal Fly Ashes for Zeolitization
2.2. Analysis of Initial Samples and Synthesized Products
2.3. Hydrothermal Method
3. Results
3.1. Characterization of Initial Material (CFA)
3.2. Characterization of Synthetized Products by Textural Analysis, XRD, and SEM-EDX
4. Discussion
4.1. Influence of the Parameters on the Process of Hydrothermal Synthesis
4.1.1. Initial Sample
4.1.2. Effect of Time, Temperature, and LiCl
4.1.3. Si/Al Ratio
4.1.4. Effect of Changing the Variable
4.2. Phase Formation and Textural Properties during the Hydrothermal Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCPs | Coal combustion products |
CFA | Coal fly ash |
XRF | X-ray fluorescence |
SEM | Scanning electron microscopy |
XRD | X-ray diffraction |
EDX | Energy Dispersive X-Ray Spectroscopy |
LOI | Loss on ignition |
SOD | Sodalite |
PHI | Phillipsite |
FAU | Faujasite |
CHA | Chabazite |
St | External surface area |
SBET | Specific surface area |
Vmicro | Volume of micropore |
References
- Harris, D.; Heidrich, C.; Feuerborn, J.; Global Aspects on Coal Combustion Products. Coaltrans. 2019. Available online: https://www.coaltrans.com/insights/article/global-aspects-on-coal-combustion-products (accessed on 20 January 2021).
- European Coal Combustion Products Association e.V. ECOBA Statistics 2016. Essen: ECOBA e.V. Available online: http://www.ecoba.com/ (accessed on 10 December 2020).
- Ryu, G.U.; Khalid, H.R.; Lee, N.; Wang, Z.; Lee, H.K. The Effects of NaOH Concentration on the Hydrothermal Synthesis of a Hydroxyapatite–Zeolite Composite Using Blast Furnace Slag. Minerals 2021, 11, 21. [Google Scholar] [CrossRef]
- Kang, Y.; Swain, B.; Im, B.; Yoon, J.-H.; Park, K.H.; Lee, C.G.; Kim, D.G. Synthesis of Zeolite Using Aluminum Dross and Waste LCD Glass Powder: A Waste to Waste Integration Valorization Process. Metals 2019, 9, 1240. [Google Scholar] [CrossRef] [Green Version]
- Łach, M.; Grela, A.; Komar, N.; Mikuła, J.; Hebda, M. Calcined Post-Production Waste as Materials Suitable for the Hydrothermal Synthesis of Zeolites. Materials 2019, 12, 2742. [Google Scholar] [CrossRef] [Green Version]
- Jha, B.; Singh, D.N. Fly Ash Zeolites, 1st ed.; Advanced Structured Materials Series; Springer: Singapore, 2016; Volume 78, ISBN 978-981-10-1402-4. [Google Scholar]
- Chindaprasirt, P.; Rattanasak, U. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer. Waste Manag. 2009, 30, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yang, J.; Ma, H.; Ma, X.; Yuan, J. Synthesis of pure NaA zeolites from coal fly ashes for ammonium removal from aqueous solutions. Clean Technol. Environ. Policy 2016, 18, s10098-s015. [Google Scholar] [CrossRef]
- Rayalu, S.; Meshram, S.U.; Hasan, M.Z. Highly crystalline faujasitic zeolites from flyash. J. Hazard. Mater. 2000, 77, 123–131. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Białecka, B. Hydrothermal Synthesis of Zeolites from Polish Coal Fly Ash. Polish J. Environ. Stud. 2005, 14, 713–719. [Google Scholar]
- Murayama, N.; Yamamoto, H.; Shibata, J. Zeolite synthesis from coal fly ash by hydrothermal reaction using various alkali sources. J. Chem. Technol. Biotechnol. 2002, 77, 280–286. [Google Scholar] [CrossRef]
- Lee, N.K.; Khalid, H.R.; Lee, H.K. Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment. Microporous Mesoporous Mater. 2016, 229, 22–30. [Google Scholar] [CrossRef]
- Khalid, H.R.; Lee, N.K.; Park, S.M.; Abbas, N.; Lee, H.K. Synthesis of geopolymer-supported zeolites via robust one-step method and their adsorption potential. J. Hazard. Mater. 2018, 353, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Inada, M.; Eguchi, Y.; Enomoto, N.; Hojo, J. Synthesis of zeolite from coal fly ashes with different silica–alumina composition. Fuel 2005, 84, 299–304. [Google Scholar] [CrossRef]
- Tanaka, H.; Eguchi, H.; Fujimoto, S.; Hino, R. Two-step process for synthesis of a single phase Na–A zeolite from coal fly ash by dialysis. Fuel 2006, 85, 1329–1334. [Google Scholar] [CrossRef]
- Fukui, K.; Katoh, M.; Yamamoto, T.; Yoshida, H. Utilization of NaCl for phillipsite synthesis from fly ash by hydrothermal treatment with microwave heating. Adv. Powder Technol. 2009, 20, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Choi, C.L.; Lim, W.T.; Kim, M.C.; Choi, J.; Heo, N.H. Molten-salt method for the synthesis of zeolitic materials I. Zeolite formation in alkaline molten-salt system. Microporous Mesoporous Mater. 2000, 37, 91–98. [Google Scholar] [CrossRef]
- Park, M.; Choi, C.L.; Lim, W.T.; Kim, M.C.; Choi, J.; Heo, N.H. Molten-salt method for the synthesis of zeolitic materials II. Characterization of zeolitic materials. Microporous Mesoporous Mater. 2000, 37, 81–89. [Google Scholar] [CrossRef]
- Berkgaut, V.; Singer, A. High capacity cation exchanger by hydrothermal zeolitization of coal fly ash. Appl. Clay Sci. 1996, 10, 369–378. [Google Scholar] [CrossRef]
- Thomson, K.T. Handbook of Zeolite Science and Technology; Auerbach, S.M., Carrado, K.A., Dutta, P.K., Eds.; Marcel Dekker, Inc.: New York, NY, USA; Marcel Dekker, Inc.: Basel., Switzerland, 2003. xii. J. Am. Chem. Soc. 2004, 126, 8858–8859. [Google Scholar] [CrossRef]
- Somerset, V.; Petrik, L.; Iwuoha, E. Alkaline hydrothermal conversion of fly ash precipitates into zeolites 3: The removal of mercury and lead ions from wastewater. J. Environ. Manag. 2008, 87, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Byoung, J.A. Synthesis of Na-P1 Zeolite from Coal Fly Ash. J. Korean Soc. Atmos. Environ. 1997, 3, 185–190. [Google Scholar]
- Fernández-Pereira, C.; Galiano, Y.L.; Rodríguez-Piñero, M.A.; Vale, J.; Querol, X. Utilisation of zeolitised coal fly ash as immobilising agent of a metallurgical waste. J. Chem. Technol. Biotechnol. 2002, 77, 305–310. [Google Scholar] [CrossRef]
- Hollman, G.; Steenbruggen, G.; Janssen-Jurkovičová, M. A two-step process for the synthesis of zeolites from coal fly ash. Fuel 1999, 78, 1225–1230. [Google Scholar] [CrossRef]
- Franus, W.; Wdowin, M.; Franus, M. Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 2014, 186, 5721–5729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wałek, T.T.; Saito, F.; Zhang, Q. The effect of low solid/liquid ratio on hydrothermal synthesis of zeolites from fly ash. Fuel 2008, 87, 3194–3199. [Google Scholar] [CrossRef]
- Wdowin, M.; Franus, M.; Panek, R.; Badura, L.; Franus, W. The conversion technology of fly ash into zeolites. Clean Technol. Environ. Policy 2014, 16, 1217–1223. [Google Scholar] [CrossRef] [Green Version]
- Pedrolo, D.R.S.; de Menezes Quines, L.K.; de Souza, G.; Marcilio, N.R. Synthesis of zeolites from Brazilian coal ash and its application in SO2 adsorption. J. Environ. Chem. Eng. 2017, 5, 4788–4794. [Google Scholar] [CrossRef]
- Inada, M.; Tsujimoto, H.; Eguchi, Y.; Enomoto, N.; Hojo, J. Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel 2005. [Google Scholar] [CrossRef]
- Esaifan, M.; Warr, L.N.; Grathoff, G.; Meyer, T.; Schafmeister, M.-T.; Kruth, A.; Testrich, H. Synthesis of Hydroxy-Sodalite/Cancrinite Zeolites from Calcite-Bearing Kaolin for the Removal of Heavy Metal Ions in Aqueous Media. Minerals 2019, 9, 484. [Google Scholar] [CrossRef] [Green Version]
- Skupina CEZ. Elektrárna Dětmarovice. Available online: https://www.cez.cz (accessed on 10 December 2020).
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Hudec, P.; Novanský, J.; Silhár, S.; Trung, T.N.; Zúbek, M.; Maďar, J. Possibility of Using t-Plots, Obtained from Nitrogen Adsorption for the Valuation of Zeolites. Adsorpt. Sci. Technol. 1986, 3, 159–166. [Google Scholar] [CrossRef]
- Panitchakarn, P.; Laosiripojana, N.; Viriya-umpikul, N.; Pavasant, P. Synthesis of high-purity Na-A and Na-X zeolite from coal fly ash. J. Air Waste Manag. Assoc. 2014, 64, 586–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Williams, R.T. Empirical Procedures for the Analysis of Physisorption Isotherms. Adsorpt. Sci. Technol. 2005, 23, 839–853. [Google Scholar] [CrossRef]
- Smith, J.V. Structural Classification of Zeolites; Mineralogical Society of America: Chantilly, VA, USA, 1963; pp. 281–290. [Google Scholar]
- Vávra, V. Atlas Minerálů: Silikáty—Tektosilikáty—Skupina Zeolitů; Ústav geologických věd, Přírodovědecká fakulta, Masarykova univerzita: Brno, Czech Republic, 2013; Available online: http://mineraly.sci.muni.cz/ (accessed on 10 January 2021).
- Oh, J.E.; Moon, J.; Mancio, M.; Clark, S.M.; Monteiro, P.J.M. Bulk modulus of basic sodalite, Na8 [AlSiO4] 6 (OH)2·2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers. Cem. Concr. Res. 2011, 41, 107–112. [Google Scholar] [CrossRef]
- Feng, W.; Wan, Z.; Daniels, J.; Li, Z.; Xiao, G.; Yu, J.; Xu, D.; Guo, H.; Zhang, D.; May, E.F.; et al. Synthesis of high quality zeolites from coal fly ash: Mobility of hazardous elements and environmental applications. J. Clean. Prod. 2018, 202, 390–400. [Google Scholar] [CrossRef]
- Belviso, C. Ultrasonic vs. hydrothermal method: Different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time? Ultrason. Sonochem. 2018, 43, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.T.; Xia, M.S.; Ye, Y.; Zhang, L. Synthesis of zeolite Li-ABW from fly ash by fusion method. J. Hazard. Mater. 2009, 170, 639–644. [Google Scholar] [CrossRef] [PubMed]
Methods | Chemicals | L/S | T (°C) | t (h) | Zeolites | Reference |
---|---|---|---|---|---|---|
Hydrothermal method | NaOH, KOH, Na2CO3 | 8 | 90–150 | 24–96 | Chabazite, Na-P1, phillipsite, sodalite, faujasite, zeolites (4A,A,P, X, Y) | [9,10,11,12,13] |
Hydrothermal method using microwave waves | NaOH | 8 | 100 | 0.25–2 | Na-P1 | [14,15,16] |
Molten salt method | KOH, KNO3, NaOH, NaNO3 NH4F, NH4NO3 | - | 350 | 3–24 | Sodalite, cancrinite | [17,18] |
Fusion and hydrothermal method | NaOH, H2O, Na3AlO3 | 10 | 500–650 | 1–2 | Faujasite, Na-A, Na-X, zeolite X | [9,18,19,20] |
XRF Phase (wt.%) | CFA No. 1 | CFA No. 2 | XRF Element (mg/kg) | CFA No. 1 | CFA No. 2 |
---|---|---|---|---|---|
Fe2O3 | 7.90 | 10.60 | V | 191 | 193 |
Na2O | 0.59 | 0.39 | Cr | 166 | 169 |
MgO | 1.93 | 2.01 | Ni | 122 | 113 |
Al2O3 | 23.3 | 20.3 | Cu | 134 | 124 |
SiO2 | 52.6 | 55.0 | Zn | 245 | 100 |
P2O5 | 0.18 | 0.11 | Rb | 154 | 177 |
SO3 | 0.69 | 0.21 | Sr | 321 | 271 |
Cl | 0.01 | 0.00 | Zr | 188 | 326 |
CaO | 4.02 | 5.45 | Ba | 1171 | 893 |
TiO2 | 1.07 | 1.20 | Pb | 131 | 43 |
K2O | 3.52 | 3.67 | |||
LOI | 4.3 | 6.5 |
Coal fly ash No. 1 (%) | ||||||||
Mineral Phase | ZnO | Quartz | Mullite | Limestone | Periclase | Fe2O3 | Fe3O4 | Amorphous |
With ZnO | 8.19 | 16.12 | 16.63 | 0.52 | 0.68 | 2.11 | 1 | 54.75 |
Without ZnO | - | 17.56 | 18.11 | 0.57 | 0.74 | 2.30 | 1.09 | 59.63 |
Coal fly ash No. 2 (%) | ||||||||
Mineral Phase | ZnO | Quartz | Mullite | Limestone | Periclase | Fe2O3 | Fe3O4 | Amorphous |
With ZnO | 7.61 | 30.43 | 8.96 | - | - | 0.78 | 0.82 | 51.40 |
Without ZnO | - | 32.94 | 9.70 | - | - | 0.84 | 0.89 | 55.63 |
Sample | Coal Fly Ash | L/S | NaOH | Aq. g. | Al2O3 | LiCl | T (°C) | t (h) | C. P. | SBET/St (m2/g) | Vmicro (cm3/g) | Zeolite Phase |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | No. 2 | 7.5:1 | 2 M | - | - | - | 90 °C | 6 h | No | - | - | - |
0A | No. 1 | 7.5:1 | 2 M | - | - | - | 90 °C | 6 h | No | SBET 8.2/St ULD | ULD | - |
0B | No. 2 | 7.5:1 | 2 M | - | - | - | 110 °C | 6 h | No | SBET 6.7/St ULD | ULD | - |
0C | No. 1 | 7.5:1 | 2 M | - | - | - | 110 °C | 6 h | No | SBET 33.6/St 13.3 | 0.0091 | CHA 4.11%, FAU Na 0.32% |
0D | No. 2 | 7.5:1 | 3 M | - | - | - | 110 °C | 6 h | No | SBET 24.0/St 19.0 | 0.0022 | - |
0E | No. 1 | 7.5:1 | 3 M | - | - | - | 110 °C | 6 h | No | SBET 48.6/St 20.8 | 0.0128 | CHA 4.68%, FAU Na 0.52% |
1 | No. 1 | 30:1 | 4 M | - | - | - | 100 °C | 24 h | Yes | SBET 140.4/St 36.6 | 0.0459 | SOD 0.68%, FAU Na 1.41% |
1A | No. 1 | 30:1 | 4 M | - | - | 2 mL 1% | 100 °C | 24 h | Yes | SBET 27.1/St 26.2 | 0.0109 | SOD 15.64% |
1B | No. 1 | 30:1 | 4 M | - | - | 4 mL 1% | 100 °C | 24 h | Yes | SBET 35.8/St 23.8 | 0.0054 | SOD 15.61%, FAU Na 0.18% |
1C | No. 1 | 30:1 | 4 M | 10 mL | - | 2 mL 1% | 100 °C | 24 h | Yes | SBET 94.0/St 37.6 | 0.262 | SOD 7.14%, FAU Ca 0.64% |
1D | No. 1 | 30:1 | 4 M | 10 mL | - | 4 mL 1% | 100 °C | 24 h | Yes | SBET 39.9/St 30.1 | 0.0043 | SOD 2.73%, PHI 7.33% |
2 | No. 1 | 30:1 | 4 M | - | - | - | 100 °C | 48 h | Yes | SBET 45.5/St 44.2 | ULD | SOD 14.54% |
2A | No. 1 | 30:1 | 4 M | - | - | 2 mL 1% | 100 °C | 48 h | Yes | - | - | SOD 15.57%, FAU Na 0.29% |
2B | No. 1 | 30:1 | 4 M | - | - | 4 mL 1% | 100 °C | 48 h | Yes | - | - | SOD 14.54% |
3 | No. 1 | 30:1 | 4 M | - | - | - | 120 °C | 24 h | Yes | SBET 37.3/St 28.0 | 0.040 | SOD 17.07% |
3A | No. 1 | 30:1 | 4 M | - | - | 2 mL 1% | 120 °C | 24 h | Yes | SBET 36.7/St 25.8 | 0.0046 | SOD 18.74%, PHI 1.88% |
3B | No. 1 | 30:1 | 4 M | - | - | 4 mL 1% | 120 °C | 24 h | Yes | - | - | SOD 18.32%, PHI 1.93% |
4 | No. 1 | 30:1 | 4 M | - | - | - | 120 °C | 48 h | Yes | - | - | SOD 23.72% |
4A | No. 1 | 30:1 | 4 M | - | - | 2 mL 1% | 120 °C | 48 h | Yes | - | - | SOD 23.68%, PHI 2.28% |
4B | No. 1 | 30:1 | 4 M | - | - | 4 mL 1% | 120 °C | 48 h | Yes | SBET 33.6/St 23.5 | 0.0044 | SOD 26.37%, PHI 2.10% |
4C | No. 1 | 30:1 | 4 M | - | - | 2 mL 10% | 100 °C | 24 h | Yes | - | - | SOD 10.68%, FAU Na 0.86% |
4D | No. 1 | 30:1 | 4 M | - | - | 2 mL 10% | 100 °C | 48 h | Yes | SBET 40.9/St 30.1 | 0.0050 | SOD 27.48% |
5E | No. 1 | 30:1 | 4 M | - | - | 2 mL 10% | 120 °C | 24 h | Yes | - | - | SOD 24.85% |
6F | No. 1 | 30:1 | 4 M | - | - | 2 mL 10% | 120 °C | 48 h | Yes | SBET 46.3/St 35.6 | 0.0045 | SOD 25.12% |
5 | No. 1 | 30:1 | 4 M | - | 1.1558 g | - | 100 °C | 24 h | Yes | - | - | SOD 8.90%, FAU Na 0.74% |
5A | No. 1 | 30:1 | 4 M | - | 1.1558 g | 4 mL 1% | 100 °C | 24 h | Yes | SBET 95.1/St 51.5 | 0.0198 | SOD 10.46%, FAU Na 0.68% |
5B | No. 1 | 30:1 | 4 M | - | 1.1558 g | 4 mL 10% | 100 °C | 24 h | Yes | - | - | SOD 10.72%, FAU Na 0.67% |
6 | No. 1 | 30:1 | 4 M | - | 1.1558 g | - | 120 °C | 24 h | Yes | - | - | SOD 23.35%, PHI 9.22% |
6A | No. 1 | 30:1 | 4 M | - | 1.1558 g | 4 mL 1% | 120 °C | 24 h | Yes | SBET 25.3/St 21.0 | 0.0018 | SOD 29.34%, PHI 4.90% |
6B | No. 1 | 30:1 | 4 M | - | 1.1558 g | 4 mL 10% | 120 °C | 24 h | Yes | SBET 23.27/St 17.6 | - | SOD 43.79% |
Sample/Mineral Phase | ZnO | Quartz | Mullite | Sodalite | Phillipsite | Amorphous |
---|---|---|---|---|---|---|
Sample No.4A with ZnO | 10.90 | 0.71 | 4.79 | 21.10 | 2.03 | 60.48 |
Sample No. 4A without ZnO | - | 0.80 | 5.38 | 23.68 | 2.28 | 67.88 |
Sample No. 6 with ZnO | 9.09 | 3.05 | - | 21.23 | 8.38 | 58.25 |
Sample No. 6 without ZnO | - | 3.36 | - | 23.35 | 9.22 | 64.07 |
Sample No. 6B with ZnO | 9.09 | 1.60 | 1.22 | 39.81 | - | 48.28 |
Sample No. 6B without ZnO | - | 1.76 | 1.34 | 43.79 | - | 53.11 |
CFA No. 1 without ZnO | - | 17.76 | 18.11 | - | - | 59.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Längauer, D.; Čablík, V.; Hredzák, S.; Zubrik, A.; Matik, M.; Danková, Z. Preparation of Synthetic Zeolites from Coal Fly Ash by Hydrothermal Synthesis. Materials 2021, 14, 1267. https://doi.org/10.3390/ma14051267
Längauer D, Čablík V, Hredzák S, Zubrik A, Matik M, Danková Z. Preparation of Synthetic Zeolites from Coal Fly Ash by Hydrothermal Synthesis. Materials. 2021; 14(5):1267. https://doi.org/10.3390/ma14051267
Chicago/Turabian StyleLängauer, David, Vladimír Čablík, Slavomír Hredzák, Anton Zubrik, Marek Matik, and Zuzana Danková. 2021. "Preparation of Synthetic Zeolites from Coal Fly Ash by Hydrothermal Synthesis" Materials 14, no. 5: 1267. https://doi.org/10.3390/ma14051267
APA StyleLängauer, D., Čablík, V., Hredzák, S., Zubrik, A., Matik, M., & Danková, Z. (2021). Preparation of Synthetic Zeolites from Coal Fly Ash by Hydrothermal Synthesis. Materials, 14(5), 1267. https://doi.org/10.3390/ma14051267