Effect of Sintering Process on Ionic Conductivity of Li7-xLa3Zr2-xNbxO12 (x = 0, 0.2, 0.4, 0.6) Solid Electrolytes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef]
- Ma, C.; Cheng, A.Y.; Yin, B.K.; Luo, A.J.; Sharafi, C.A. Interfacial stability of Li metal/solid electrolyte elucidated via in situ electron microscopy. Nano. Lett. 2016, 16, 7030–7036. [Google Scholar] [CrossRef]
- Han, F.D.; Zhu, Y.Z.; He, X.F.; Mo, Y.F. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 2016, 6, 1501590. [Google Scholar] [CrossRef]
- Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review. Chem. Soc. Rev. 2014, 43, 4714–4727. [Google Scholar] [CrossRef]
- Cussen, E.J. Structure and ionic conductivity in lithium garnets. J. Mater. Chem. 2010, 20, 5167–5173. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Xu, W.; Shen, Y.; Lin, Y.H.; Nan, C.W. X-ray absorption near-edge spectroscopy study on Ge-doped Li7La3Zr2O12: Enhanced ionic conductivity and defect chemistry. Electrochim. Acta 2014, 115, 581–586. [Google Scholar] [CrossRef]
- Lu, X.J.; Yang, D.Y. Preparation of garnet-type Li7−3xAlxLa3Zr2O12 at lower temperature by using powders of mixed pre-treatment conditions. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2023–2027. [Google Scholar] [CrossRef]
- Rettenwander, D.; Wagner, R.; Reyer, A.; Bonta, M.; Chen, L.; Doeff, M.M.; Limbeck, A.; Wilkening, M.; Amthauer, G. Interface instability of Fe-stabilized Li7La3Zr2O12 versus Li metal. J. Phys. Chem. C 2018, 122, 3780–3785. [Google Scholar] [CrossRef]
- Wu, J.F.; Chen, E.Y.; Yu, Y.; Liu, L.; Wu, Y.; Pang, W.K.; Peterson, V.K.; Guo, X. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl. Mater. Interfaces 2017, 9, 1542–1552. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, H.; Berendts, S.; Mogwitz, B.; Janek, J. Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors “Li7La3Zr2O12” and Li7-xLa3Zr2–xTaxO12 with garnet-type structure. J. Power Sources 2012, 206, 236–244. [Google Scholar] [CrossRef]
- Wang, Y.X.; Lai, W. High ionic conductivity lithium garnet oxides of Li7-xLa3Zr2-xTaxO12 compositions. Electrochem. Solid State Lett. 2012, 15, A68–A71. [Google Scholar] [CrossRef]
- Hayamizu, K.; Matsuda, Y.; Matsui, M.; Imanishi, N. Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin-echo NMR method. Solid State Nucl. Magn. Reson. 2015, 70, 21–27. [Google Scholar] [CrossRef]
- Janani, N.; Ramakumar, S.; Kannan, S.; Murugan, R. Optimization of lithium content and sintering aid for maximized Li+ conductivity and density in Ta-doped Li7La3Zr2O12. J. Am. Ceram. Soc. 2015, 98, 2039–2046. [Google Scholar] [CrossRef]
- Huang, M.; Mao, S.; Shen, Y.; Nan, C.W.; Munakata, H.; Kanamura, K. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2-xMx)O12 (M=Ta, Nb) solid electrolytes. J. Power Sources 2014, 261, 206–211. [Google Scholar] [CrossRef]
- Deviannapoorani, C.; Dhivya, L.; Ramakumar, S.; Murugan, R. Synthesis of garnet structured Li7+xLa3YxZr2-xO12 (x=0-0.4) by modified sol-gel method. J. Sol. Gel. Sci. Technol. 2012, 64, 510–514. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, Z.G.; Jin, Y.J.; Ouyang, J.H.; Chen, L.; Wang, Y.J. Effect of sintering process on the microstructure and ionic conductivity of Li7–xLa3Zr2–xTaxO12 ceramics. Ceram. Int. 2019, 45, 18439–18444. [Google Scholar] [CrossRef]
- Ohta, S.; Kobayashi, T.; Asaoka, T. High lithium ionic conductivity in the garnet-type oxide Li7−xLa3 (Zr2−x, Nbx)O12 (x=0–2). J. Power Sources 2011, 196, 3342–3345. [Google Scholar] [CrossRef]
- Lee, H.C.; Oh, N.R.; Yoo, A.R.; Kim, Y.; Skamoto, J. Preparation of a Li7La3Zr1.5Nb0.5O12 garnet solid electrolyte ceramic by using Sol-gel powder synthesis and hot pressing and its characterization. J. Korean Phys. Soc. 2018, 73, 1535–1540. [Google Scholar] [CrossRef]
- Imagawa, H.; Ohta, S.; Kihira, Y.; Asaoka, T. Garnet-type Li6.75La3Zr1.75Nb0.25O12 synthesized by coprecipitation method and its lithium ion conductivity. Solid State Ion. 2014, 262, 609–612. [Google Scholar] [CrossRef]
- David, I.N.; Thompson, T.; Wolfenstine, J.; Allen, J.L.; Sakamoto, J. Microstructure and Li-ion conductivity of hot-pressed cubic Li7La3Zr2O12. J. Am. Ceram. Soc. 2015, 98, 1209–1214. [Google Scholar] [CrossRef]
- Huang, X.; Song, Z.; Xiu, T.P.; Badding, M.E.; Wen, Z.Y. Sintering, micro-structure and Li+ conductivity of Li7−xLa3 Zr2−xNbxO12 /MgO (x=0.2–0.7) Li-Garnet composite ceramics. Ceram. Int. 2019, 45, 56–63. [Google Scholar] [CrossRef]
Composition Sintering Time (h) | Conductivity (S·cm−1) | Composition Sintering Time (h) | Conductivity (S·cm−1) | Composition Sintering Time (h) | Conductivity (S·cm−1) |
---|---|---|---|---|---|
x = 0.2, 2 h | 1.09 × 10−4 | x = 0.4, 2 h | 1.56 × 10−4 | x = 0.6, 2 h | 1.49 × 10−4 |
x = 0.2, 3 h | 1.43 × 10−4 | x = 0.4, 3 h | 3.56 × 10−4 | x = 0.6, 3 h | 1.92 × 10−4 |
x = 0.2, 4 h | 2.37 × 10−4 | x = 0.4, 4 h | 3.86 × 10−4 | x = 0.6, 4 h | 2.36 × 10−4 |
x = 0.2, 5 h | 2.49 × 10−4 | x = 0.4, 5 h | 2.62 × 10−4 | x = 0.6, 5 h | 2.42 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, L.; Wu, Z.; Zhang, C. Effect of Sintering Process on Ionic Conductivity of Li7-xLa3Zr2-xNbxO12 (x = 0, 0.2, 0.4, 0.6) Solid Electrolytes. Materials 2021, 14, 1671. https://doi.org/10.3390/ma14071671
Ni L, Wu Z, Zhang C. Effect of Sintering Process on Ionic Conductivity of Li7-xLa3Zr2-xNbxO12 (x = 0, 0.2, 0.4, 0.6) Solid Electrolytes. Materials. 2021; 14(7):1671. https://doi.org/10.3390/ma14071671
Chicago/Turabian StyleNi, Lei, Zhigang Wu, and Chuyi Zhang. 2021. "Effect of Sintering Process on Ionic Conductivity of Li7-xLa3Zr2-xNbxO12 (x = 0, 0.2, 0.4, 0.6) Solid Electrolytes" Materials 14, no. 7: 1671. https://doi.org/10.3390/ma14071671
APA StyleNi, L., Wu, Z., & Zhang, C. (2021). Effect of Sintering Process on Ionic Conductivity of Li7-xLa3Zr2-xNbxO12 (x = 0, 0.2, 0.4, 0.6) Solid Electrolytes. Materials, 14(7), 1671. https://doi.org/10.3390/ma14071671