Predictive Optimization of Electrical Conductivity of Polycarbonate Composites at Different Concentrations of Carbon Nanotubes: A Valorization of Conductive Nanocomposite Theoretical Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used and Blending Process of PC-CNT Conductive Composites
2.2. Observation and Characterization
2.3. Hyperparameter Optimization
2.4. Mean Square Root Error and Coefficient of Determination Methods for Model Fitting
3. Results and Discussion
3.1. Theoretical Models Background and Applicability
3.1.1. Determination of Percolation Using Power Law Theory
3.1.2. Numerical Method to Predict the Electrical Conductivity
3.2. Applicability and Validation of Models to Predict the Electrical Conductivity of PC-CNT Composites
3.2.1. Voet Model
3.2.2. Bueche Model
3.2.3. McCullough Model
3.2.4. Mamunya Model
3.2.5. Sohi Model Extension
3.3. Electromagnetic Absorption Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathur, R.B.; Pande, S.; Singh, B.P. Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym. Compos. 2008, 29, 717–727. [Google Scholar] [CrossRef]
- Nilsson, F.; Krueckel, J.; Schubert, D.W. Simulating the effective electric conductivity of polymer composites with high aspect ratio fillers. Compos. Sci. Technol. 2016, 132, 16–23. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, G.J.; Meguid, S.A. A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys. 2014, 115, 193706. [Google Scholar] [CrossRef]
- Boudahri, F.; Kara-Zaïtri, K.; Bennekrouf, M. Contribution à l’étude théorique du phénomène de conduction électrique et l’effet des constituants d’un polymère conducteur composite sur le comportement électrique. Phys. Chem. News 2010, 54, 31–37. [Google Scholar]
- Taherian, R. Development of an equation to model electrical conductivity of polymer-based carbon nanocomposites. ECS J. Solid State Sci. Technol. 2014, 3, 26–38. [Google Scholar] [CrossRef]
- Kassim, S.E.; Achour, M.E.; Costa, L.C.; Lahjomri, F. Prediction of the DC electrical conductivity of carbon black filled polymer composites. Polym. Bull. 2015, 72, 2561–2571. [Google Scholar] [CrossRef]
- Rahaman, M.; Chaki, T.K.; Khastgir, D. Modeling of DC conductivity for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through insitu polymerization of aniline in EVA matrix. Compos. Sci. Technol. 2012, 72, 1575–1580. [Google Scholar] [CrossRef]
- Wang, Y.; Shan, J.W.; Weng, G.J. Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 2015, 118, 065101. [Google Scholar] [CrossRef]
- Coelho, P.H.S.L.; Marchesin, M.S.; Morales, A.R. Electrical percolation, morphological and dispersion properties of MWCNT/PMMA nanocomposites. Mater. Res. 2014, 17, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Luna, A.; Neri, W. Graphene liquid crystal retarded percolation for new high-k materials. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Bouknaitir, I.; Aribou, N.; Elhad Kassim, S.A. Electrical properties of conducting polymer composites: Experimental and modeling approaches. Spectrosc. Lett. 2017, 50, 196–199. [Google Scholar] [CrossRef]
- Ram, R.; Khastgir, D.; Rahaman, M. Electromagnetic interference shielding effectiveness and skin depth of poly (vinylidene fluoride)/particulate nano-carbon filler composites: Prediction of electrical conductivity and percolation threshold. Polym. Int. 2019, 68, 1194–1203. [Google Scholar] [CrossRef]
- Rahaman, M.; Chaki, T.K.; Khastgir, D. Determination of percolation limits of conductivity, dielectric constant, and EMI SE for conducting polymer composites using Sigmoidal Boltzmann model. Adv. Sci. Lett. 2012, 10, 115–117. [Google Scholar] [CrossRef]
- Sidi Salah, L.; Chouai, M.; Danlée, Y.; Huynen, I. Simulation and Optimization of Electromagnetic Absorption of Polycarbonate/CNT Composites Using Machine Learning. Micromachines 2020, 11, 778. [Google Scholar] [CrossRef] [PubMed]
- Danlée, Y.; Bailly, C.; Huynen, I. Thin and flexible multilayer polymer composite structures for effective control of microwave electromagnetic absorption. Compos. Sci. Technol. 2014, 100, 182–188. [Google Scholar] [CrossRef]
- Jaiswar, R.; Danlée, Y.; Mefsin, H.M. Absorption modulation of FSS-polymer nanocomposites through incorporation of conductive nanofillers. Appl. Phys. A 2017, 123, 164. [Google Scholar] [CrossRef]
- Lee, Y.-S. Traceability chart for vector network analyzers from 70 kHz to 70 GHz. In Proceedings of the 2009 73rd ARFTG Microwave Measurement Conference, Boston, MA, USA, 12 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–9. [Google Scholar]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Mcgibbon, R.T.; Hernández, C.X.; Harrigan, M.P.; Kearnes, S.; Sultan, M.M.; Jastrzebski, S.; Husic, B.E.; Pande, V.S. Osprey: Hyperparameter optimization for machine learning. J. Open Source Softw. 2016, 1, 34. [Google Scholar] [CrossRef]
- Taherian, R. Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites. Compos. Sci. Technol. 2016, 123, 17–31. [Google Scholar] [CrossRef]
- Wackerly, D.; Mendenhall, W.; Scheaffer, R.L. Mathematical Statistics with Applications; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- Last, B.J.; Thouless, D.J. Percolation theory and electrical conductivity. Phys. Rev. Lett. 1971, 27, 1719. [Google Scholar] [CrossRef]
- Ponnamma, D.; Ninan, N.; Thomas, S. Carbon Nanotube Tube Filled Polymer Nanocomposites and Their Applications in Tissue Engineering. In Applications of Nanomaterials; Woodhead Publishing: Cambridge, UK, 2018; pp. 391–414. [Google Scholar]
- Mansor, M.R.; Fadzullah, S.H.S.M.; Masripan, N.A.B. Comparison between functionalized graphene and carbon nanotubes: Effect of morphology and surface group on mechanical, electrical, and thermal properties of nanocomposites. In Functionalized Graphene Nanocomposites and their Derivatives; Elsevier: Amsterdam, The Netherlands, 2019; pp. 177–204. [Google Scholar]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Eshwaran, S.B.; Stockelhuber, K.K.W. Strong strain sensing performance of natural rubber nanocomposites. ACS Appl. Mater. Interfaces 2017, 9, 4860–4872. [Google Scholar] [CrossRef]
- Linfield, G.; Penny, J. Numerical Methods: Using MATLAB; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Plass, M.; Stone, M. Curve-fitting with piecewise parametric cubics. In Proceedings of the 10th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 8–10 August 1983. [Google Scholar]
- Pramanik, P.K.; Khastgir, D.; Saha, T.N. Conductive nitrile rubber composite containing carbon fillers: Studies on mechanical properties and electrical conductivity. Composites 1992, 23, 183–191. [Google Scholar] [CrossRef]
- Jose, T.; George, S.C.; Maya, M.G. Functionalized MWCNT and PVA nanocomposite membranes for dielectric and pervaporation applications. J. Chem. Eng. Process. Technol. 2015, 6, 1. [Google Scholar]
- Kunjappan, A.M.; Poothanari, M.A.; Ramachandran, A.A. High-performance electromagnetic interference shielding material based on an effective mixing protocol. Polymer Int. 2019, 68, 637–647. [Google Scholar] [CrossRef]
- Ram, R.; Soni, V.; Khastgir, D. Electrical and thermal conductivity of polyvinylidene fluoride (PVDF)–Conducting Carbon Black (CCB) composites: Validation of various theoretical models. Compos. Part B Eng. 2020, 185, 107748. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Terentjev, E.M. Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymers 2012, 4, 275–295. [Google Scholar] [CrossRef] [Green Version]
- Mefsin, H.M.; Hermans, S.; Huynen, I.; Delcotre, A.; Bailly, C. Thin oriented polymer carbon nanotube composites for microwave absorption. Mater. Today Proc. 2016, 3, 491–496. [Google Scholar]
- Mccullough, R.L. Generalized combining rules for predicting transport properties of composite materials. Compos. Sci. Technol. 1985, 22, 3–21. [Google Scholar] [CrossRef]
- Sohi, N.J.S.; Bhadra, S.; Khastgir, D. The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon 2011, 49, 1349–1361. [Google Scholar] [CrossRef]
- Abd-El-Messieh, S.L.; El-Nashar, D.E.; Younan, A.F. Investigations on NBR/EPDM–Materials loaded with nano scaled Carbon Black with the applicability of conductivity Models and mechanical properties. Gummi. Kunst 2013, 66, 36–45. [Google Scholar]
- Ranjbar, Z.; Yari, H. Modeling of electrical conductive graphene filled epoxy coatings. Prog. Org. Coat. 2018, 125, 411–419. [Google Scholar]
- Krause, B.; Pötschke, P.; Häußler, L. Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Compos. Sci. Technol. 2009, 69, 1505–1515. [Google Scholar] [CrossRef]
- Vargas-Bernal, R.; Herrera-Pérez, G.; Calixto-Olalde, M.; Tecpoyotl-Torres, M. Analysis of DC electrical conductivity models of carbon nanotube-polymer composites with potential application to nanometric electronic devices. J. Electr. Comput. Eng. 2013, 2013, 179538. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Liu, Y.; Prada-Silvy, R. Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 73–83. [Google Scholar] [CrossRef]
- Caamaño, C.; Grady, B.; Resasco, D.E. Influence of nanotube characteristics on electrical and thermal properties of MWCNT/polyamide 6, 6 composites prepared by melt mixing. Carbon 2012, 50, 3694–3707. [Google Scholar] [CrossRef]
- Otaegi, I.; Aranburu, N.; Iturrondobeitia, M. The Effect of the Preparation Method and the Dispersion and Aspect Ratio of CNTs on the Mechanical and Electrical Properties of Bio-Based Polyamide-4, 10/CNT Nanocomposites. Polymers 2019, 11, 2059. [Google Scholar] [CrossRef] [Green Version]
- Merzouki, A.; Haddaoui, N. Electrical conductivity modeling of polypropylene composites filled with carbon black and acetylene black. Int. Sch. Res. Not. 2012, 2012, 493065. [Google Scholar] [CrossRef] [Green Version]
- Roh, S.C.; Choi, E.Y.; Choi, Y.S. Characterization of the surface energies of functionalized multi-walled carbon nanotubes and their interfacial adhesion energies with various polymers. Polymer 2014, 55, 1527–1536. [Google Scholar] [CrossRef]
- Mamunya, E.P.; Davidenko, V.V.; Lebedev, E.V. Effect of polymer-filler interface interactions on percolation conductivity of thermoplastics filled with carbon black. Compos. Interfaces 1996, 4, 169–176. [Google Scholar] [CrossRef]
- Emplit, A.; Huynen, I. Study of Absorption in Carbon Nanotube Composites from 1HZ to 40GHz. Int. J. Microw. Eng. 2017, 2, 1. [Google Scholar] [CrossRef]
- Rahaman, M.; Al Ghufais, I.A.; Periyasami, G. Recycling and Reusing Polyethylene Waste as Antistatic and Electromagnetic Interference Shielding Materials. Int. J. Polym. Sci. 2020, 2020, 6421470. [Google Scholar] [CrossRef]
CNTs (wt.%) | 0.25 | 0.5 | 1.5 | 2.5 | 3 | 3.5 | 4 | 4.5 |
CNTs (vol.%) | 0.17 | 0.34 | 1.03 | 1.71 | 2.05 | 2.41 | 2.75 | 3.1 |
Composition | Frequency [GHz] | |||||
---|---|---|---|---|---|---|
PC-CNT | 15 | 0.975 | ||||
25 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidi Salah, L.; Ouslimani, N.; Chouai, M.; Danlée, Y.; Huynen, I.; Aksas, H. Predictive Optimization of Electrical Conductivity of Polycarbonate Composites at Different Concentrations of Carbon Nanotubes: A Valorization of Conductive Nanocomposite Theoretical Models. Materials 2021, 14, 1687. https://doi.org/10.3390/ma14071687
Sidi Salah L, Ouslimani N, Chouai M, Danlée Y, Huynen I, Aksas H. Predictive Optimization of Electrical Conductivity of Polycarbonate Composites at Different Concentrations of Carbon Nanotubes: A Valorization of Conductive Nanocomposite Theoretical Models. Materials. 2021; 14(7):1687. https://doi.org/10.3390/ma14071687
Chicago/Turabian StyleSidi Salah, Lakhdar, Nassira Ouslimani, Mohamed Chouai, Yann Danlée, Isabelle Huynen, and Hammouche Aksas. 2021. "Predictive Optimization of Electrical Conductivity of Polycarbonate Composites at Different Concentrations of Carbon Nanotubes: A Valorization of Conductive Nanocomposite Theoretical Models" Materials 14, no. 7: 1687. https://doi.org/10.3390/ma14071687