Special Issue: Supplementary Cementitious Materials in Concrete, Part I
1. Introduction
- Measuring the chemical, physical, and mineralogical properties of SCMs, before and after hydration.
- Defining the amounts and the types of SCMs in accordance with the desired effects on fresh and hardened concrete performances.
- Designing structural elements made with normal and high-performance concretes containing SCMs.
- Assessing the durability and environmental impact of cement-based composites containing SCMs.
2. Short Description of the Articles Presented in This Special Issue
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mahmud, S.; Manzur, T.; Samrose, S.; Torsha, T. Significance of Properly Proportioned Fly Ash Based Blended Cement for Sustainable Concrete Structures of Tannery Industry. Structures 2021, 29, 1898–1910. [Google Scholar] [CrossRef]
- Wang, Y.; Suraneni, P. Experimental Methods to Determine the Feasibility of Steel Slags as Supplementary Cementitious Materials. Constr. Build. Mater. 2019, 204, 458–467. [Google Scholar] [CrossRef]
- Fořt, J.; Šál, J.; Ševčík, R.; Doleželová, M.; Keppert, M.; Jerman, M.; Záleská, M.; Stehel, V.; Černý, R. Biomass Fly Ash as an Alternative to Coal Fly Ash in Blended Cements: Functional Aspects. Constr. Build. Mater. 2021, 271, 121544. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Wang, K.T.; Tang, Q.; Nzeukou, A.N.; Billong, N.; Melo, U.C.; Cui, X.M. Review on the Use of Volcanic Ashes for Engineering Applications. Resour. Conserv. Recycl. 2018, 137, 177–190. [Google Scholar] [CrossRef]
- Elavarasan, S.; Priya, A.K.; Ajai, N.; Akash, S.; Annie, T.J.; Bhuvana, G. Experimental Study on Partial Replacement of Cement by Metakaolin and GGBS. Mater. Today Proc. 2021, 37, 3527–3530. [Google Scholar] [CrossRef]
- Jóźwiak-Niedźwiedzka, D. Microscopic Observations of Self-Healing Products in Calcareous Fly Ash Mortars. Microsc. Res. Tech. 2015, 78, 22–29. [Google Scholar] [CrossRef]
- Acordi, J.; Luza, A.; Fabris, D.C.N.; Raupp-Pereira, F.; De Noni, A., Jr.; Montedo, O.R.K. New Waste-Based Supplementary Cementitious Materials: Mortars And Concrete Formulations. Constr. Build. Mater. 2020, 240, 117877. [Google Scholar] [CrossRef]
- Vargas, F.; Lopez, M. Development of a New Supplementary Cementitious Material from the Activation of Copper Tailings: Mechanical Performance and Analysis of Factors. J. Clean. Prod. 2018, 182, 427–436. [Google Scholar] [CrossRef]
- Jóźwiak-Niedźwiedzka, D.; Sobczak, M.; Gibas, K. Carbonation of Concretes Containing Calcareous Fly Ashes. Roads Bridges Drogi i Mosty 2013, 12, 223–236. [Google Scholar] [CrossRef]
- Han, X.; Feng, J.; Shao, Y.; Hong, R. Influence of a Steel Slag Powder-Ground Fly Ash Composite Supplementary Cementitious Material on the Chloride and Sulphate Resistance of Mass Concrete. Powder Technol. 2020, 370, 176–183. [Google Scholar] [CrossRef]
- Elahi, M.M.A.; Shearer, C.R.; Reza, A.N.R.; Saha, A.K.; Khan, M.N.N.; Hossain, M.M.; Sarker, P.K. Improving the Sulfate Attack Resistance of Concrete by Using Supplementary Cementitious Materials (SCMs): A Review. Constr. Build. Mater. 2021, 281, 122628. [Google Scholar] [CrossRef]
- Jóźwiak-Niedźwiedzka, D.; Gibas, K.; Glinicki, M.A.; Nowowiejski, G. Influence of High Calcium Fly Ash on Permeability of Concrete in Respect to Aggressive Media. Roads Bridges Drogi i Mosty 2011, 10, 39–61. [Google Scholar]
- Andrade, C.; Martínez-Serrano, A.; Sanjuán, M.Á.; Tenorio Ríos, J.A. Reduced Carbonation, Sulfate and Chloride Ingress Due to the Substitution of Cement by 10% Non-Precalcined Bentonite. Materials 2021, 14, 1300. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.; Kurda, R.; Herki, B.; Alyousef, R.; Mustafa, R.; Mohammed, A.; Raza, A.; Ahmed, H.; Fayyaz Ul-Haq, M. Effect of Varying Steel Fiber Content on Strength and Permeability Characteristics of High Strength Concrete with Micro Silica. Materials 2020, 13, 5739. [Google Scholar] [CrossRef] [PubMed]
- Hager, I.; Tracz, T.; Choińska, M.; Mróz, K. Effect of Cement Type on the Mechanical Behavior and Permeability of Concrete Subjected to High Temperatures. Materials 2019, 12, 3021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woyciechowski, P.; Woliński, P.; Adamczewski, G. Prediction of Carbonation Progress in Concrete Containing Calcareous Fly Ash Co-Binder. Materials 2019, 12, 2665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Vera, V.E.; Tenza-Abril, A.J.; Saval, J.M.; Lanzón, M. Influence of Crystalline Admixtures on the Short-Term Behaviour of Mortars Exposed to Sulphuric Acid. Materials 2019, 12, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Vimonsatit, V.; Mendis, P.; Nassif, A. Study of Strain-Hardening Behaviour of Fibre-Reinforced Alkali-Activated Fly Ash Cement. Materials 2019, 12, 4015. [Google Scholar] [CrossRef] [Green Version]
- Fantilli, A.P.; Paternesi Meloni, L.; Nishiwaki, T.; Igarashi, G. Tailoring Confining Jacket for Concrete Column Using Ultra High Performance-Fiber Reinforced Cementitious Composites (UHP-FRCC) with High Volume Fly Ash (HVFA). Materials 2019, 12, 4010. [Google Scholar] [CrossRef] [Green Version]
- Monfardini, L.; Facconi, L.; Minelli, F. Experimental Tests on Fiber-Reinforced Alkali-Activated Concrete Beams Under Flexure: Some Considerations on the Behavior at Ultimate and Serviceability Conditions. Materials 2019, 12, 3356. [Google Scholar] [CrossRef] [Green Version]
- Vu, V.-A.; Cloutier, A.; Bissonnette, B.; Blanchet, P.; Dagenais, C. Steatite Powder Additives in Wood-Cement Drywall Particleboards. Materials 2020, 13, 4813. [Google Scholar] [CrossRef] [PubMed]
- Kalinowska-Wichrowska, K.; Kosior-Kazberuk, M.; Pawluczuk, E. The Properties of Composites with Recycled Cement Mortar Used as a Supplementary Cementitious Material. Materials 2020, 13, 64. [Google Scholar] [CrossRef] [Green Version]
- Ishak, S.; Lee, H.-S.; Singh, J.K.; Ariffin, M.A.M.; Lim, N.H.A.S.; Yang, H.-M. Performance of Fly Ash Geopolymer Concrete Incorporating Bamboo Ash at Elevated Temperature. Materials 2019, 12, 3404. [Google Scholar] [CrossRef] [Green Version]
- Vukićević, M.; Marjanović, M.; Pujević, V.; Jocković, S. The Alternatives to Traditional Materials for Subsoil Stabilization and Embankments. Materials 2019, 12, 3018. [Google Scholar] [CrossRef] [Green Version]
- Glinicki, M.A.; Jóźwiak-Niedźwiedzka, D.; Dąbrowski, M. The Influence of Fluidized Bed Combustion Fly Ash on the Phase Composition and Microstructure of Cement Paste. Materials 2019, 12, 2838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vu, V.-A.; Cloutier, A.; Bissonnette, B.; Blanchet, P.; Duchesne, J. The Effect of Wood Ash as a Partial Cement Replacement Material for Making Wood-Cement Panels. Materials 2019, 12, 2766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaskulski, R.; Jóźwiak-Niedźwiedzka, D.; Yakymechko, Y. Calcined Clay as Supplementary Cementitious Material. Materials 2020, 13, 4734. [Google Scholar] [CrossRef] [PubMed]
- Nicoara, A.I.; Stoica, A.E.; Vrabec, M.; Šmuc Rogan, N.; Sturm, S.; Ow-Yang, C.; Gulgun, M.A.; Bundur, Z.B.; Ciuca, I.; Vasile, B.S. End-of-Life Materials Used as Supplementary Cementitious Materials in the Concrete Industry. Materials 2020, 13, 1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.-M.; Kwon, S.-J.; Myung, N.V.; Singh, J.K.; Lee, H.-S.; Mandal, S. Evaluation of Strength Development in Concrete with Ground Granulated Blast Furnace Slag Using Apparent Activation Energy. Materials 2020, 13, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantilli, A.P.; Tondolo, F.; Chiaia, B.; Habert, G. Designing Reinforced Concrete Beams Containing Supplementary Cementitious Materials. Materials 2019, 12, 1248. [Google Scholar] [CrossRef] [Green Version]
- Han, J.-G.; Cho, J.-W.; Kim, S.-W.; Park, Y.-S.; Lee, J.-Y. Characteristics of CO2 and Energy-Saving Concrete with Porous Feldspar. Materials 2020, 13, 4204. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, G.H.; Ahmed, H.; Ali, B.; Alyousef, R. Assessment of High Performance Self-Consolidating Concrete through an Experimental and Analytical Multi-Parameter Approach. Materials 2021, 14, 985. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fantilli, A.P.; Jóźwiak-Niedźwiedzka, D. Special Issue: Supplementary Cementitious Materials in Concrete, Part I. Materials 2021, 14, 2291. https://doi.org/10.3390/ma14092291
Fantilli AP, Jóźwiak-Niedźwiedzka D. Special Issue: Supplementary Cementitious Materials in Concrete, Part I. Materials. 2021; 14(9):2291. https://doi.org/10.3390/ma14092291
Chicago/Turabian StyleFantilli, Alessandro P., and Daria Jóźwiak-Niedźwiedzka. 2021. "Special Issue: Supplementary Cementitious Materials in Concrete, Part I" Materials 14, no. 9: 2291. https://doi.org/10.3390/ma14092291
APA StyleFantilli, A. P., & Jóźwiak-Niedźwiedzka, D. (2021). Special Issue: Supplementary Cementitious Materials in Concrete, Part I. Materials, 14(9), 2291. https://doi.org/10.3390/ma14092291