Revealing the WEDM Process Parameters for the Machining of Pure and Heat-Treated Titanium (Ti-6Al-4V) Alloy
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Experimental Setup
2.3. Methodology
2.4. Selection of Process Parameters
2.5. Design of the Experiment
3. Results and Discussion
3.1. Analysis of the Pure Titanium Sample
3.2. Analysis of the Annealed Titanium Alloy
3.3. Analysis of the Oil-Quenched Titanium Alloy
3.4. Analysis of the Hardened Titanium Alloy
3.5. Surface Characterization
4. Conclusions
- The effects of the process parameters, viz. servo reference voltage, wire tension, and wire feed, on the response characteristics, viz. cutting speed, were studied.
- In the WEDM of the titanium superalloy (Ti-6Al-4V), the RSM was used to build a mathematical model in the form of multiple regression equations that correlated the dependent and independent parameters. The response surfaces were plotted using the model equations to investigate the effects of the process parameters on the performance measures.
- There was a large increase in the cutting speed when the annealed titanium alloy was processed using WEDM. The increase in cutting speed was greater compared to the other processing methods used on the hardened, quenched, and pure Ti-6Al-4V. The annealing of the titanium alloy increased its ductility at room temperature, fracture toughness, thermal and dimensional stability, and creep resistance. The annealing resulted in the reformation of the microstructures of the titanium alloy, which led to a high cutting speed. The maximum cutting speed of 1.75 mm/min was obtained when the annealed Ti-6Al-4V was processed using WEDM.
- The Ti-6Al-4V alloy’s properties became refined when it was treated with different heat treatment processes. The alloy became more tough and compact due to changes in the grain structure and the phase transformation.
- The spark formation was better and more effective in the case of the annealed titanium alloy as compared to the other heat-treated alloy when machined using WEDM.
- Less breakage of the wire electrode was observed when the annealed alloy was machined using WEDM as compared to the other alloys.
- The major parameters that impacted the cutting speed the most were the servo reference voltage and the wire tension.
- The SEM micrographs revealed that the hardened titanium alloy had better surface properties as compared to other processed alloys. There was less formation of microcracks, holes, and debris on the surface of the hardened alloy. This was because of the hardening of the alloy, as it relieved the internal stresses and the smaller grain formation resulted in a more compact structure. The metal became more refined, which allowed for better surface properties than the other alloys.
- The SEM images revealed that the surface roughness of the hardened alloy was significantly better than the alloys treated with the other heat treatment processes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prasad, A.V.S.R.; Ramji, K.; Datta, G.L. An experimental study of wire EDM on Ti-6Al-4V alloy. Proc. Mater. Sci. 2014, 5, 2567–2576. [Google Scholar] [CrossRef] [Green Version]
- Somani, N.; Tyagi, Y.K.; Kumar, P.; Srivastava, V.; Bhowmick, H. Enhanced tribological properties of SiC reinforced copper metal matrix composites. Mater. Res. Express 2019, 6, 016549. [Google Scholar] [CrossRef]
- Bañon, F.; Sambruno, A.; Batista, M.; Fernandez-Vidal, S.R.; Salguero, J. Study of the one-shot drilling of CFRP/Ti6Al4V stacks with a double tip angle cutting-tool geometry. AIP Conf. Proc. 2019, 2113, 2–8. [Google Scholar]
- Kumar, A.; Kumar, V.; Kumar, J. Investigation of machining characterization for wire wear ratio & MRR on pure titanium in WEDM process through response surface methodology. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 2018, 232, 108–126. [Google Scholar]
- Ramulu, M.; Spaulding, M.; Laxminarayana, P. Cutting Characteristics of Titanium Graphite Composite by Wire Electrical Discharge Machining. Adv. Mater. Res. 2012, 630, 114–120. [Google Scholar] [CrossRef]
- AMS4911: Titanium Alloy, Sheet, Strip, and Plate, 6Al-4V, Annealed; AMS G Titanium and Refractory Metals Committee; SAE International: Warrendale, PA, USA, 1957. [CrossRef]
- Hong, H.; Riga, A.T.; Gahoon, J.M.; Scott, C.G. Machinability of steel and titanium alloys under lubrication. Wear 1993, 162–164, 34–39. [Google Scholar] [CrossRef]
- Shajan, K.; Shunmugam, M.S. Characteristics of WEDM machined Ti-6Al-4V surface. J. Mater. Lett. 2004, 58, 2231–2237. [Google Scholar]
- Vamsi, P.K.; Surendra, B. Optimizing surface finish in WEDM using the Taguchi parameter design method. J. Braz. Soc. Mech. Sci. Eng. 2010, 2, 107. [Google Scholar]
- Klocke, F.; Welling, D.; Dieckmann, J. Comparison of grinding and WEDM concerning fatigue strength and surface integrity of Ti-6Al-4V components. Proc. Eng. 2011, 19, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Kuriachen, B.; Paul, J. Modeling of wire electrical discharge machining parameters using Ti-6Al-4V. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 377. [Google Scholar]
- Alis, A.; Abdullah, B.; Abbas, N.M. Influence of machine feed rate in WEDM of Ti-6Al-4V with constant current (6A) using brass wire. Proc. Eng. 2012, 41, 1812–1817. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.K.; Pandey, p.; Mehta, S.; Swati, S.; Mishra, S.K.; Tom, K.J. Characterization of ABS Material in Hybrid Composites: A Review. In Advances in Engineering Design. Lecture Notes in Mechanical Engineering; Prasad, A., Gupta, S., Tyagi, R., Eds.; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Ghodsiyeh, D.; Lahiji, A.; Ghanbari, M. Optimizing material removal rate (MRR) in WEDMing Titanium alloy Ti-6Al-4V using Taguchi method. J. Appl. Sci. Eng. Technol. 2012, 4, 3154–3161. [Google Scholar]
- Kumar, A.; Kumar, V.; Kumar, J. Prediction of surface roughness in wire electric discharge machining (WEDM) process based on response surface methodology. Int. J. Eng. Technol. 2012, 2, 708. [Google Scholar]
- Nourbaksh, F.; Rajkumar, K.P.; Malshe, A.P. Wire electro discharge machining pf Titanium alloy. Proc. CIRP 2013, 5, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.S.; Mannan, K.T. Investigation on surface characterization of WEDMed surface of Titanium alloy. Int. J. Eng. Res. Technol. 2013, 6, 563–570. [Google Scholar]
- Dhobe, M.M.; Chopde, I.K.; Gogte, C.L. Effect of heat treatment and process parameters on surface roughness in wireelectro discharge machining. Int. J. Mech. Eng. Robot. Res. 2013, 2, 275–281. [Google Scholar]
- Mouralova, K.; Kovar, J.; Karpisek, Z.; Kousa, P. Optimization Machining of Titanium Alloy Ti-6Al-4V by WEDM with Emphasis on the Quality of the Machined Surface. J. Manuf. Technol. 2016, 16, 1326–1331. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.K. Effect of wire electric discharge machining (EDM) parameters on fatigue life of Ti-6Al-4V alloy. Int. J. Fatigue 2019, 128, 105186. [Google Scholar] [CrossRef]
- Gupta, N.K.; Kumar, M.; Thakre, G.D. The mechanical and tribological characteristics of self-healing Al6061 alloy. Mater. Res. Express 2019, 6, 0865d5. [Google Scholar] [CrossRef]
- Gupta, N.K.; Thakre, G.D.; Kumar, M. Dry sliding wear performance on self-healing Al6061 composites. J. Eng. Des. Technol. 2020, 18, 1357–1370. [Google Scholar] [CrossRef]
- Gupta, N.K.; Kumar, M.; Thakre, G.D. Mechanical Characterization of 60Pb40Sn Reinforced Al6061 Self-healing Composite. In Advances in Materials Science and Engineering. Lecture Notes in Mechanical Engineering; Prakash, C., Singh, S., Krolczyk, G., Pabla, B., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Somani, N.; Sharma, N.; Sharma, A.; Gautam, Y.K.; Khatri, P.; Solomon, J.A.A. Fabrication of Cu-SiC composite using powder metallurgy technique. Mater. Today Proc. 2018, 5, 28136–28141. [Google Scholar] [CrossRef]
- Gautam, Y.; Somani, N.; Kumar, M.; Sharma, S. A review on fabrication and characterization of copper metal matrix composite (CMMC). AIP Conf. Proc. 2018, 020017. [Google Scholar]
- Somani, N.; Singh, N.; Gupta, N. Joining and Characterization of SS-430 using Microwave Hybrid Heating Technique. J. Eng. Des. Technol. 2020. [Google Scholar] [CrossRef]
- Somani, N.; Kumar, K.; Gupta, N. Review on Microwave Cladding: A New Approach. In Advances in Materials Processing; Springer: Singapore, 2020; pp. 77–90. [Google Scholar]
- Chen, X.; Wang, Z.; Wang, Y.; Chi, G. Investigation on MRR and machining gap of micro reciprocated Wire-EDM for SKD11. Int. J. Precis. Eng. Manuf. 2020, 21, 11–22. [Google Scholar] [CrossRef]
- Somani, N.; Gautam, Y.K.; Sharma, S.K.; Kumar, M. Stastical analysis of dry sliding wear and friction behavior of Cu/SiC sintered composite. AIP Conf. Proc. 2018, 2018, 020018. [Google Scholar]
- Kumar, A.; Soota, T.; Kumar, J. Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology. J. Ind. Eng. Int. 2018, 14, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Singh, R.P.; Tyagi, M.; Kataria, R. Investigation of dimensional deviation in wire EDM of M42 HSS using cryogenically treated brass wire. Mater. Today Proc. 2020, 25, 679–685. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, R.; Trehan, R.; Garg, R.K.; Tyagi, M. Investigation into the Surface Quality in Wire-Cut EDM of M42 HSS: An Experimental Study and Modeling Using RSM. In Optimization Methods in Engineering; Proceeding CPIE; Springer: Singapore, 2021; pp. 245–256. [Google Scholar]
- Singh, R.; Singla, V.K. Surface Characterization of M42 Hss Treated with Cryogenic and Non-Cryogenated Brass Wire in WEDM Process. IMRF Biann. Peer Rev. Int. Res. J. 2017, 5, 28–32. [Google Scholar]
- Singh, R.; Singla, V.K. Parametric Modeling for Wire Electrical Discharge Machining of M42 HSS using Untreated and Cryogenated Treated Brass Wire by using RSM. Int. J. Mech. Prod. Eng. 2018, 5, 63–67. [Google Scholar]
- Datt, M.; Singh, D. Optimization of WEDM Parameters using Taguchi and ANOVA Method. Int. J. Curr. Eng. Technol. 2015, 15, 3843–3847. [Google Scholar]
- Singh, R.P.; Singhal, S. Investigation of machining characteristics in rotary ultrasonic machining of alumina ceramic. Mater. Manuf. Process. 2017, 32, 309–326. [Google Scholar] [CrossRef]
- Singh, R.P.; Singhal, S. Rotary Ultrasonic Machining of Macor Ceramic: An Experimental Investigation and Microstructure Analysis. Mater. Manuf. Process. 2016, 32, 927–939. [Google Scholar] [CrossRef]
- Manjaiah, M.; Narendranath, S.; Akbari, J. Optimization of Wire Electro Discharge Machining Parameters to Achieve Better MRR and Surface Finish. Proc. Mater. Sci. 2014, 5, 2635–2644. [Google Scholar] [CrossRef] [Green Version]
- Puri, A.; Bhattacharyya, B. An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM. Int. J. Mach. Tools Manuf. 2003, 43, 151–159. [Google Scholar] [CrossRef]
- Rao, R.V.; Pawar, P.J. Modelling and optimization of process parameters of wire electrical discharge machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2009, 223, 1431–1440. [Google Scholar] [CrossRef]
- Tarng, Y.; Ma, S.; Chung, L. Determination of optimal cutting parameters in wire electrical discharge machining. Int. J. Mach. Tools Manuf. 1995, 35, 1693–1701. [Google Scholar] [CrossRef]
- Mouralova, K.; Kovar, J.; Klakurkova, L.; Blazik, P.; Kalivoda, M.; Kousal, P. Analysis of surface and subsurface layers after WEDM for Ti-6Al-4V with heat treatment. Measurement 2018, 116, 556–564. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.K.; Littlefair, G.; Debnath, S.; Prakash, C.; Singh, M.A.; Marla, D.; Singh, R.K. Methods and variables in Electrical discharge machining of titanium alloy–A review. Heliyon 2020, 6, 05554. [Google Scholar] [CrossRef]
- Kumar, A.; Grover, N.; Manna, A.; Chohan, J.S.; Kumar, R.; Singh, S.; Prakash, C.; Pruncu, C.I. Investigating the influence of WEDM process parameters in machining of hybrid aluminum composites. Adv. Compos. Lett. 2020, 29. [Google Scholar] [CrossRef]
- Basak, A.; Pramanik, A.; Prakash, C. Surface, kerf width and material removal rate of Ti6Al4V titanium alloy generated by wire electrical discharge machining. Heliyon 2019, 5, 01473. [Google Scholar]
- Pramanik, A.; Islam, M.N.; Basak, A.K.; Dong, Y.; Littlefair, G.; Prakash, C. Optimizing dimensional accuracy of titanium alloy features produced by wire electrical discharge machining. Mater. Manuf. Process. 2019, 34, 1083–1090. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Hardness (HRC) | 36 |
Density (g/cc) | 4.43 |
Ultimate tensile strength (MPa) | 950 |
Fatigue strength (MPa) | 510 |
Modulus of elasticity (GPa) | 113.8 |
Elongation (%) | 14 |
Poisson’s ratio | 0.342 |
Thermal conductivity (W/m·K) | 6.7 |
Specific heat (J/kg·K) | 560 |
Electrical resistivity (µΩ·m) | 1.78 |
Melting point (°C) | 1604–1660 |
Component | Wt.% |
---|---|
Al | ≈6 |
Fe | Max 0.25 |
O | Max 0.20 |
Ti | ≈90 |
V | ≈4 |
Name | Units | Type | Changes | Standard Deviation | Low | High |
---|---|---|---|---|---|---|
Servo reference voltage | V | Factor | Easy | 0 | 18 | 27 |
Wire feed speed | m/min | Factor | Easy | 0 | 8 | 10 |
Wire tension | N | Factor | Easy | 0 | 0.3 | 1.4 |
Std | Run | Factors | Cutting Speed (mm/min) | |||||
---|---|---|---|---|---|---|---|---|
A: Servo Reference Voltage (V) | B: Wire Feed Speed (m/min) | C: Wire Tension (N) | Pure Sample | Annealed | Oil Quenched | Hardened | ||
8 | 1 | 25 | 10 | 1.2 | 1.50 | 1.35 | 1.60 | 1.55 |
12 | 2 | 22.5 | 10 | 0.9 | 1.45 | 1.55 | 1.55 | 1.50 |
6 | 3 | 25 | 8 | 1.2 | 1.42 | 1.35 | 1.40 | 1.35 |
7 | 4 | 20 | 10 | 1.2 | 1.60 | 1.7 | 1.68 | 1.65 |
14 | 5 | 22.5 | 9 | 1.4 | 1.45 | 1.50 | 1.50 | 1.45 |
2 | 6 | 25 | 8 | 0.6 | 1.40 | 1.35 | 1.45 | 1.40 |
1 | 7 | 20 | 8 | 0.6 | 1.60 | 1.70 | 1.60 | 1.60 |
5 | 8 | 20 | 8 | 1.2 | 1.60 | 1.70 | 1.67 | 1.65 |
9 | 9 | 18.2 | 9 | 0.9 | 1.65 | 1.75 | 1.70 | 1.65 |
20 | 10 | 22.5 | 9 | 0.9 | 1.50 | 1.50 | 1.55 | 1.50 |
10 | 11 | 26.7 | 9 | 0.9 | 1.35 | 1.30 | 1.37 | 1.35 |
11 | 12 | 22.5 | 7 | 0.9 | 1.45 | 1.55 | 1.50 | 1.45 |
17 | 13 | 22.5 | 9 | 0.9 | 1.50 | 1.60 | 1.55 | 1.50 |
18 | 14 | 22.5 | 9 | 0.9 | 1.5 | 1.6 | 1.55 | 1.5 |
4 | 15 | 25 | 10 | 0.6 | 1.5 | 1.4 | 1.47 | 1.45 |
13 | 16 | 22.5 | 9 | 0.3 | 1.55 | 1.5 | 1.55 | 1.55 |
19 | 17 | 22.5 | 9 | 0.9 | 1.5 | 1.55 | 1.55 | 1.5 |
16 | 18 | 22.5 | 9 | 0.9 | 1.5 | 1.5 | 1.55 | 1.5 |
15 | 19 | 22.5 | 9 | 0.9 | 1.45 | 1.5 | 1.55 | 1.5 |
3 | 20 | 20 | 10 | 0.6 | 1.6 | 1.7 | 1.68 | 1.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, N.K.; Somani, N.; Prakash, C.; Singh, R.; Walia, A.S.; Singh, S.; Pruncu, C.I. Revealing the WEDM Process Parameters for the Machining of Pure and Heat-Treated Titanium (Ti-6Al-4V) Alloy. Materials 2021, 14, 2292. https://doi.org/10.3390/ma14092292
Gupta NK, Somani N, Prakash C, Singh R, Walia AS, Singh S, Pruncu CI. Revealing the WEDM Process Parameters for the Machining of Pure and Heat-Treated Titanium (Ti-6Al-4V) Alloy. Materials. 2021; 14(9):2292. https://doi.org/10.3390/ma14092292
Chicago/Turabian StyleGupta, Nitin Kumar, Nalin Somani, Chander Prakash, Ranjit Singh, Arminder Singh Walia, Sunpreet Singh, and Catalin Iulian Pruncu. 2021. "Revealing the WEDM Process Parameters for the Machining of Pure and Heat-Treated Titanium (Ti-6Al-4V) Alloy" Materials 14, no. 9: 2292. https://doi.org/10.3390/ma14092292
APA StyleGupta, N. K., Somani, N., Prakash, C., Singh, R., Walia, A. S., Singh, S., & Pruncu, C. I. (2021). Revealing the WEDM Process Parameters for the Machining of Pure and Heat-Treated Titanium (Ti-6Al-4V) Alloy. Materials, 14(9), 2292. https://doi.org/10.3390/ma14092292