Computer Aided Design Modelling and Finite Element Analysis of Premolar Proximal Cavities Restored with Resin Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- -
- Regardless the cavity design, the use of bulk-fill flowable resin composite is a viable option to restore the missing dental tissue.
- -
- Smaller class II cavities can be conveniently restored with low shrinkage resin composites to reduce the residual stress and the adhesive failure risk.
- -
- Conservative preparations should be performed in order to reduce the volume of resin composite material, and the stress of the direct proximal restorations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cardoso, M.; Coelho, A.; Lima, R.; Amaro, I.; Paula, A.; Marto, C.M.; Sousa, J.; Spagnuolo, G.; Ferreira, M.M.; Carrilho, E. Efficacy and Patient’s Acceptance of Alternative Methods for Caries Removal—A Systematic Review. J. Clin. Med. 2020, 9, 3407. [Google Scholar] [CrossRef]
- Lai, W.-K.; Lu, Y.-C.; Hsieh, C.-R.; Wei, C.-K.; Tsai, Y.-H.; Chan, F.-R.; Chan, Y. Developing Lactic Acid Bacteria as an Oral Healthy Food. Life 2021, 24, 268. [Google Scholar] [CrossRef]
- Ziwniewska, I.; Macieljczyk, M.; Zalewska, A. The Effect of Selected Dental Materials Used in Conservative Dentistry, Endodontics, Surgery, and Orthodontics as Well as during the Periodontal Treatment on the Redox Balance in the Oral Cavity. Int. J. Mol. Sci. 2020, 21, 9684. [Google Scholar] [CrossRef]
- Mackenzie, L.; Banerjee, A. Minimally invasive direct restorations: A practical guide. Br. Dent. J. 2017, 223, 163–171. [Google Scholar] [CrossRef]
- Zarow, M.; Vadini, M.; Chojnacka-Brozek, A.; Szczeklik, K.; Milewski, G.; Biferi, V.; D’Arcangelo, C.; De Angelis, F. Effect of Fiber Posts on Stress Distribution of Endodontically Treated Upper Premolars: Finite Element Analysis. Nanomater. 2020, 10, 1708. [Google Scholar] [CrossRef]
- Wiegand, A.; Attin, T. Treatment of proximal caries lesions by tunnel restorations. Dent. Mater. 2007, 23, 1461–1467. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.D.; Opdam, N.J.; Hickel, R.; Brunton, P.A.; Gurgan, S.; Kakaboura, A.; Shearer, A.C.; Vanherle, G.; Wilson, N.H.F. Guidance on posterior resin composites: Academy of Operative Dentistry - European Section. J. Dent. 2014, 42, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Van Ende, A.; De Munck, J.; Lise, D.P.; Van Meerbeek, B. Bulk-Fill Composites: A Review of the Current Literature. J. Adhes. Dent. 2017, 19, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Kaisarly, D.; Meierhofer, D.; El Gezawi, M.; Rösch, P.; Kunzelmann, K.H. Effects of flowable liners on the shrinkage vectors of bulk-fill composites. Clin. Oral Investig. 2021. [Google Scholar] [CrossRef]
- Campaner, L.M.; Silveira, M.P.M.; de Andrade, G.S.; Borges, A.L.S.; Bottino, M.A.; Dal Piva, A.M.d.O.; Lo Giudice, R.; Ausiello, P.; Tribst, J.P.M. Influence of Polymeric Restorative Materials on the Stress Distribution in Posterior Fixed Partial Dentures: 3D Finite Element Analysis. Polymers 2021, 13, 758. [Google Scholar] [CrossRef] [PubMed]
- Ausiello, P.; Dal Piva, A.M.d.O.; Borges, A.L.S.; Lanzotti, A.; Zamparini, F.; Epifania, E.; Mendes Tribst, J.P. Effect of Shrinking and No Shrinking Dentine and Enamel Replacing Materials in Posterior Restoration: A 3D-FEA Study. Appl. Sci. 2021, 11, 2215. [Google Scholar] [CrossRef]
- da Rocha, D.M.; Tribst, J.P.M.; Ausiello, P.; Dal Piva, A.M.d.O.; da Rocha, M.C.; Di Nicoló, R.; Borges, A.L.S. Effect of the restorative technique on load-bearing capacity, cusp deflection, and stress distribution of endodontically-treated premolars with MOD restoration. Restor. Dent. Endod. 2019, 44, e33. [Google Scholar] [CrossRef]
- Valian, A.; Moravej-Salehi, E.; Geramy, A.; Faramarzi, E. Effect of Extension and Type of Composite-Restored Class II Cavities on Biomechanical Properties of Teeth: A Three Dimensional Finite Element Analysis. J. Dent. 2015, 12, 140–150. [Google Scholar]
- de Andrade, G.S.; Pinto, A.B.A.; Tribst, J.P.M.; Chun, E.P.; Borges, A.L.S.; de Siqueira Ferreira Anzaloni Saavedra, G. Does overlay preparation design affect polymerization shrinkage stress distribution? A 3D FEA study. Comput. Methods Biomech. Biomed. Engin. 2021, 1–10. [Google Scholar] [CrossRef]
- Correia, A.M.O.; Andrade, M.R.; Tribst, J.P.M.; Borges, A.L.S.; Caneppele, T.M.F. Influence of Bulk-fill Restoration on Polymerization Shrinkage Stress and Marginal Gap Formation in Class V Restorations. Oper. Dent. 2020, 45, E207–E216. [Google Scholar] [CrossRef]
- Costa, V.L.S.; Tribst, J.P.M.; Borges, A.L.S. Influence of the occlusal contacts in formation of Abfraction Lesions in the upper premolar. Brazilian Dent. Sci. 2017, 20, 115. [Google Scholar] [CrossRef] [Green Version]
- Ausiello, P.; Ciaramella, S.; Garcia-Godoy, F.; Martorelli, M.; Sorrentino, R.; Gloria, A. Stress distribution of bulk-fill resin composite in class II restorations. Am. J. Dent. 2017, 30, 227–232. [Google Scholar] [PubMed]
- da Rocha, M.C.; da Rocha, D.M.; Tribst, J.P.M.; Borges, A.L.S.; Alvim-Pereira, F. Reduced Periodontal Support for Lower Central Incisor - A 3D Finite Element Analysis of Compressive Stress in the Periodontium. J. Int. Acad. Periodontol. 2021, 23, 65–71. [Google Scholar]
- Malysa, A.; Wezgowiec, J.; Orzeszek, S.; Florjanski, W.; Zietek, M.; Wieckiewicz, M. Effect of Different Surface Treatment Methods on Bond Strength of Dental Ceramics to Dental Hard Tissues: A Systematic Review. Molecules 2021, 26, 1223. [Google Scholar] [CrossRef]
- Mena-Álvarez, J.; Agustín-Panadero, R.; Zubizarreta-Macho, A. Effect of Fiber-Reinforced Composite and Elastic Post on the Fracture Resistance of Premolars with Root Canal Treatment—An In Vitro Pilot Study. Appl. Sci. 2020, 10, 7616. [Google Scholar] [CrossRef]
- Kodzaeva, Z.S.; Turkina, A.Y.; Doroshina, V.Y. The long-term results of teeth restoration with composite resin materials: A systematic literature review. Stomatologiya 2019, 98, 117. [Google Scholar] [CrossRef]
- Manhart, J.; Chen, H.; Hamm, G.; Hickel, R. Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper. Dent. 2004, 29, 481–508. [Google Scholar] [PubMed]
- Ausiello, P.; Ciaramella, S.; Lanzotti, A.; Ventre, M.; Borges, A.L.S.; Tribst, J.P.M.; Dal Piva, A.M.d.O.; García-Godoy, F. Mechanical behavior of Class I cavities restored by different material combinations under loading and polymerization shrinkage stress. Am. J. Dent 2019, 32, 55–60. [Google Scholar]
- Ausiello, P.; Ciaramella, S.; De Benedictis, A.; Lanzotti, A.; Tribst, J.P.M.; Watts, D.C. The use of different adhesive filling material and mass combinations to restore class II cavities under loading and shrinkage effects: A 3D-FEA. Comput. Methods Biomech. Biomed. Engin. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, A.K.; Koulaouzidou, E.A.; Gogos, C.; Achilias, D.S. Synthesis and Characterization of Dental Nanocomposite Resins Filled with Different Clay Nanoparticles. Polymers 2019, 11, 730. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.C.; Satterthwaite, J.D. Axial shrinkage-stress depends upon both C-factor and composite mass. Dent. Mater. 2008, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Davidson, C.L.; Feilzer, A.J. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J. Dent. 1997, 25, 435–440. [Google Scholar] [CrossRef]
- Tosco, V.; Vitiello, F.; Furlani, M.; Gatto, M.L.; Monterubbianesi, R.; Giuliani, A.; Orsini, G.; Putignano, A. Microleakage Analysis of Different Bulk-Filling Techniques for Class II Restorations: µ-CT, SEM and EDS Evaluations. Materials 2020, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Ferrini, F.; Sannino, G.; Chiola, C.; Capparé, P.; Gastaldi, G.; Gherlone, E. Influence of Intra-Oral Scanner (I.O.S.) on The Marginal Accuracy of CAD/CAM Single Crowns. Int. J. Environ. Res. Public Health 2019, 16, 544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernauer, S.A.; Müller, J.; Zitzmann, N.U.; Joda, T. Influence of Preparation Design, Marginal Gingiva Location, and Tooth Morphology on the Accuracy of Digital Impressions for Full-Crown Restorations: An In Vitro Investigation. J. Clin. Med. 2020, 9, 3984. [Google Scholar] [CrossRef] [PubMed]
- Hörsted-Bindslev, P.; Heyde-Petersen, B.; Simonsen, P.; Baelum, V. Tunnel or saucer-shaped restorations: A survival analysis. Clin. Oral Investig. 2005, 9, 233–238. [Google Scholar] [CrossRef]
- Martorelli, M.; Ausiello, P. A novel approach for a complete 3D tooth reconstruction using only 3D crown data. Int. J. Interact. Des. Manuf. 2013, 7, 125–133. [Google Scholar] [CrossRef]
- Arbildo-Vega, H.I.; Lapinska, B.; Panda, S.; Lamas-Lara, C.; Khan, A.S.; Lukomska-Szymanska, M. Clinical Effectiveness of Bulk-Fill and Conventional Resin Composite Restorations: Systematic Review and Meta-Analysis. Polymers 2020, 12, 1786. [Google Scholar] [CrossRef] [PubMed]
- Elshazly, T.M.; Bourauel, C.; Sherief, D.I.; El-Korashy, D.I. Evaluation of Two Resin Composites Having Different Matrix Compositions. Dent. J. 2020, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Liu, S.; Zhou, X.; Hannig, M.; Rupf, S.; Feng, J.; Peng, X.; Cheng, L. Modifying Adhesive Materials to Improve the Longevity of Resinous Restorations. Int. J. Mol. Sci. 2019, 20, 723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marovic, D.; Par, M.; Crnadak, A.; Sekelja, A.; Negovetic Mandic, V.; Gamulin, O.; Rakić, M.; Tarle, Z. Rapid 3 s Curing: What Happens in Deep Layers of New Bulk-Fill Composites? Materials 2021, 14, 515. [Google Scholar] [CrossRef]
- Freitas, F.; Pinheiro de Melo, T.; Delgado, A.H.; Monteiro, P.; Rua, J.; Proença, L.; Caldeira, J.; Mano Azul, A.; Mendes, J.J. Varying the Polishing Protocol Influences the Color Stability and Surface Roughness of Bulk-Fill Resin-Based Composites. J. Funct. Biomater. 2020, 12, 1. [Google Scholar] [CrossRef]
- El-Askary, F.S.; Botros, S.A.; Özcan, M. Effect of Surface Treatment and Storage Time on Immediate Repair Bond Strength Durability of Methacrylate- and Ormocer-Based Bulk Fill Resin Composites. Appl. Sci. 2020, 10, 8308. [Google Scholar] [CrossRef]
- Preusse, P.J.; Winter, J.; Amend, S.; Roggendorf, M.J.; Dudek, M.-C.; Krämer, N.; Frankenberger, R. Class II resin composite restorations-tunnel vs. box-only in vitro and in vivo. Clin. Oral Investig. 2021, 25, 737–744. [Google Scholar] [CrossRef]
- Pilebro, C.E.; van Dijken, J.W. Analysis of factors affecting failure of glass cermet tunnel restorations in a multi-center study. Clin. Oral Investig. 2001, 5, 96–101. [Google Scholar] [CrossRef]
- Apicella, A.; Di Palma, L.; Aversa, R.; Ausiello, P. DSC kinetic characterization of dental composites using different light sources. J. Adv. Mater. 2002, 34, 22–25. [Google Scholar]
- Prati, C.; Tribst, J.P.M.; Dal Piva, A.M.d.O.; Borges, A.L.S.; Ventre, M.; Zamparini, F.; Ausiello, P. 3D Finite Element Analysis of Rotary Instruments in Root Canal Dentine with Different Elastic Moduli. Appl. Sci. 2021, 11, 2547. [Google Scholar] [CrossRef]
- Tribst, J.P.M.; Dal Piva, A.M.d.O.; Lo Giudice, R.; Borges, A.L.S.; Bottino, M.A.; Epifania, E.; Ausiello, P. The Influence of Custom-Milled Framework Design for an Implant-Supported Full-Arch Fixed Dental Prosthesis: 3D-FEA Study. Int. J. Environ. Res. Public Health 2020, 17, 4040. [Google Scholar] [CrossRef]
- Penteado, M.M.; Tribst, J.P.M.; Dal Piva, A.M.; Ausiello, P.; Zarone, F.; Garcia-Godoy, F.; Borges, A.L. Mechanical behavior of conceptual posterior dental crowns with functional elasticity gradient. Am. J. Dent. 2019, 32, 165–168. [Google Scholar] [PubMed]
Model | Height | Width | Depth | Volume |
---|---|---|---|---|
Mesio-Occlusal | 4.55 mm | 2.19 mm | 3.42 mm | 19.20 mm3 |
Direct Access | 0.94 mm | 1.47 mm | 1.34 mm | 0.87 mm3 |
Vertical Slot | 4.93 mm | 2.0 mm | 1.36 mm | 9.78 mm3 |
Horizontal Slot | 2.14 mm | 5.45 mm | 1.22 mm | 5.44 mm3 |
Tunnel | 4.25 mm | 1.49 mm | 3.30 mm | 6.50 mm3 |
Structure | Elastic Modulus (GPa) | Poisson’s Ratio | Coefficient of Thermal Expansion | Composition | Reference |
---|---|---|---|---|---|
Enamel | 80.0 | 0.30 | - | - | [17] |
Dentin | 18.0 | 0.23 | - | - | [17] |
Pulp | 0.000003 | 0.45 | - | - | [18] |
Ligament | 0.0118 | 0.45 | - | - | [18] |
Filtek Z350 | 13.45 | 0.17 | 0.00033 | Bis-GMA, UDMA, TEGDMA, Dimethacrylate Filler content in 78.5 wt.% (Silica, zirconia, aggregated zirconia/silica) | [15] |
Filtek Bulk Fill | 13.46 | 0.18 | 0.00025 | AUDMA, AFM, UDMA, DDDMA, EDMAB Filler content in 76.5 wt.% (Silica, zirconia, ytterbium trifluoride, aggregated zirconia/silica) | [15] |
Polyurethane | 3.60 | 0.30 | - | - | [10] |
Cavity Model and Restorative Material | Enamel Stress Peak (MPa) | Location | Dentin Stress Peak (MPa) | Location |
---|---|---|---|---|
Mesio-Occlusal Bulk-fill flowable | 11.81 | Cavo-surface angle | 2.19 | Lingual wall of the proximal box |
Mesio-Occlusal Conventional | 15.34 | Cavo-surface angle | 3.80 | Lingual wall of the proximal box |
Direct Access Bulk-fill flowable | 10.09 | Cavo-surface angle | 3.44 | Vestibular wall of the cavity |
Direct Access Conventional | 11.13 | Cavo-surface angle | 4.0 | Vestibular wall of the cavity |
Vertical Slot Bulk-fill flowable | 12.99 | Lingual wall of the proximal box | 2.6 | Dihedral linguogingival |
Vertical Slot Conventional | 17.03 | Lingual wall of the proximal box | 3.5 | Dihedral linguogingival |
Horizontal Slot Bulk-fill flowable | 12.31 | Cavo-surface angle | 1.15 | Vestibular wall of the cavity |
Horizontal Slot Conventional | 13.17 | Cavo-surface angle | 1.80 | Vestibular wall of the cavity |
Tunnel Bulk-fill flowable | 13.10 | Cavo-surface angle | 3.8 | Pulpal wall of the tunnel cavity |
Cavity Model and Restorative Material | Enamel Stress Peak (MPa) | Location | Dentin Stress Peak (MPa) | Location |
---|---|---|---|---|
Mesio-Occlusal Bulk-fill flowable | 53.1 | Cavo-surface angle | 3.3 | Lingual wall of the proximal box |
Mesio-Occlusal Conventional | 55.35 | Cavo-surface angle | 3.9 | Lingual wall of the proximal box |
Direct Access Bulk-fill flowable | 36.12 | Cavo-surface angle | 3.12 | Vestibular wall of the cavity |
Direct Access Conventional | 36.14 | Cavo-surface angle | 4.34 | Vestibular wall of the cavity |
Vertical Slot Bulk-fill flowable | 56.08 | Lingual wall of the proximal box | 2.8 | Dihedral linguogingival |
Vertical Slot Conventional | 56.14 | Lingual wall of the proximal box | 3.72 | Dihedral linguogingival |
Horizontal Slot Bulk-fill flowable | 46.02 | Cavo-surface angle | 1.53 | Vestibular wall of the cavity |
Horizontal Slot Conventional | 46.10 | Cavo-surface angle | 2.01 | Vestibular wall of the cavity |
Tunnel Bulk-fill flowable | 46.71 | Cavo-surface angle | 4.01 | Pulpal wall of the tunnel cavity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matuda, A.G.N.; Silveira, M.P.M.; Andrade, G.S.d.; Piva, A.M.d.O.D.; Tribst, J.P.M.; Borges, A.L.S.; Testarelli, L.; Mosca, G.; Ausiello, P. Computer Aided Design Modelling and Finite Element Analysis of Premolar Proximal Cavities Restored with Resin Composites. Materials 2021, 14, 2366. https://doi.org/10.3390/ma14092366
Matuda AGN, Silveira MPM, Andrade GSd, Piva AMdOD, Tribst JPM, Borges ALS, Testarelli L, Mosca G, Ausiello P. Computer Aided Design Modelling and Finite Element Analysis of Premolar Proximal Cavities Restored with Resin Composites. Materials. 2021; 14(9):2366. https://doi.org/10.3390/ma14092366
Chicago/Turabian StyleMatuda, Amanda Guedes Nogueira, Marcos Paulo Motta Silveira, Guilherme Schmitt de Andrade, Amanda Maria de Oliveira Dal Piva, João Paulo Mendes Tribst, Alexandre Luiz Souto Borges, Luca Testarelli, Gabriella Mosca, and Pietro Ausiello. 2021. "Computer Aided Design Modelling and Finite Element Analysis of Premolar Proximal Cavities Restored with Resin Composites" Materials 14, no. 9: 2366. https://doi.org/10.3390/ma14092366