Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites
Abstract
:1. Introduction
2. Research Significance
3. Methodology
4. Database
5. Development of ANN Models
5.1. Architecture of ANN Models
5.2. Stage 1: Prediction of Mix-Design Influencing Factors
5.3. Stage 2: Prediction of Compressive and Tensile Strength for the Cross-Validation of ANN-I Models
6. Results and Discussion
6.1. Regression Analyses of Mix-Design Prediction of ANN-I Models
6.2. Regression Analysis of Validation of ANN-II Model
6.3. Tack-Together Outputs
6.4. Cross-Validation of Mix Design and ‘Tacked-Together (TT)’ Outputs
7. Conclusions
- This research study reveals that the basic mix-design parameters required to design the material EGC are feasible with few LM-based ANN models which can be cross-analyzed with GDX-based ANN and if only these seven mix-design influencing factors are involved, then ANN [2:16: 25:7] can be used to predict the mix which can be cross verified with GDX-ANN [7:14:2] for ensuring accuracy.
- The five best ANN models that can predict the mix-design of SHGC were LM-based ANN [2:16:16:7], ANN [2:16:25:7], ANN [2:16:16:25:7], ANN [2:16:16:8:7], and ANN [2:16:32:16:7], and the best model for cross-validation was GDX-based ANN [7:14:2].
- A few models, i.e., ANN [2:16:16:7], performed well on regression analysis, which failed to perform cross-validation. This insists on the importance of cross-validating since to predict the mix-design of composites, the performance of the combination of all the factors is the key concern and not the performance of individual factors/materials.
- Even though the ANN [2:16:25:7] model showed less accuracy upon regression analysis, it performed well on cross-validation with the accuracy of prediction up to 85% and 90% upon compressive and tensile strength.
- In addition to the identification of each best mix-design factor upon regression analysis, isolating and tacking-together also performed best with the accuracy of 88% upon cross-validation.
- Thus it is recommended to use those predictive models for the material design of EGC involving the aforesaid mix factors with fewer trial mixes. This would certainly reduce the cost and time of trial experiments. However, the models cannot be applied directly for EGC involving surplus mix-factors.
Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohno, M.; Li, V.C. A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites. Constr. Build. Mater. 2014, 57, 163–168. [Google Scholar] [CrossRef]
- Rangan, B.V. Geopolymer concrete for environmental protection. Indian Concr. J. 2014, 88, 41–59. [Google Scholar]
- Li, V.C. Engineered cementitious composite (ecc): Material, structural, and durability performance. In Concrete Construction Engineering Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 1001–1048. [Google Scholar]
- Zhang, P.; Wang, K.; Wang, J.; Guo, J.; Ling, Y. Macroscopic and microscopic analyses on mechanical performance of metakaolin/fly ash based geopolymer mortar. J. Clean. Prod. 2021, 294, 126193. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, P.; Wang, J.; Wang, K.; Zhang, T. Interfacial properties of geopolymer mortar and concrete substrate: Effect of polyvinyl alcohol fiber and nano-SiO2 contents. Constr. Build. Mater. 2022, 315, 125735. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, P.; Guo, J.; Gao, Z. Single and synergistic enhancement on durability of geopolymer mortar by polyvinyl alcohol fiber and nano-SiO2. J. Mater. Res. Technol. 2021, 15, 1801–1814. [Google Scholar] [CrossRef]
- IS 10262; Indian Standards Guidelines for Design and Development of Different Types of Concrete Mixes. Bureau of Indian Standards: New Delhi, India, 2019; p. 44.
- Wille, K.; Naaman, A.E.; Parra-Montesinos, G.J. Ultra-high performance Concrete with compressive strength exceeding 150 MPa (22 ksi): A simpler way. ACI Mater. J. 2011, 108, 46–54. [Google Scholar] [CrossRef]
- Kumar, R.; Shafiq, N.; Kumar, A.; Jhatial, A.A. Investigating embodied carbon, mechanical properties, and durability of high-performance concrete using ternary and quaternary blends of metakaolin, nano-silica, and fly ash. Environ. Sci. Pollut. Res. 2021, 28, 49074–49088. [Google Scholar] [CrossRef]
- Di Prisco, M.; Plizzari, G.; Vandewalle, L. Fibre reinforced concrete: New design perspectives. Mater. Struct. 2009, 42, 1261–1281. [Google Scholar] [CrossRef]
- Sathish Kumar, V.; Ganesan, N.; Indira, P.V. Engineering properties of hybrid fibre reinforced ternary blend geopolymer concrete. J. Compos. Sci. 2021, 5, 203. [Google Scholar] [CrossRef]
- Clarke, J.L. Strengthening concrete structures with fibre composites. Proc. Inst. Civ. Eng.—Struct. Build. 2003, 156, 49–50. [Google Scholar] [CrossRef]
- Nele, D.B.; Elke, G.; Abir, A.-T.; Paola, A.; Cornelia, B.; Diana, B.; Aveline, D.; Robert, D.; Ferrara, L.; Tony, J.; et al. A Review of Self-Healing Concrete for Damage Management of Structures. Adv. Mater. Interfaces 2018, 5, 1800074. [Google Scholar]
- Kaplan, G.; Gulcan, A.; Cagdas, B.; Bayraktar, O.Y. The impact of recycled coarse aggregates obtained from waste concretes on lightweight pervious concrete properties. Environ. Sci. Pollut. Res. 2021, 28, 17369–17394. [Google Scholar] [CrossRef] [PubMed]
- Elshahawi, M.; Hückler, A.; Schlaich, M. Infra lightweight concrete: A decade of investigation (a review). Struct. Concr. 2021, 22, E152–E168. [Google Scholar] [CrossRef]
- Chandwani, V.; Agrawal, V.; Nagar, R. Applications of Artificial Neural Networks in Modeling Compressive Strength of Concrete: A State of the Art Review. Int. J. Curr. Eng. Technol. 2014, 4, 2949–2956. [Google Scholar]
- Pitchaipillai, N.; Paramasivam, S.K. Deep neural network-based mechanical behavior analysis for various masonry infill walls with hybrid fiber mortar. Struct. Concr. 2019, 20, 1974–1985. [Google Scholar] [CrossRef]
- Gupta, T.; Patel, K.A.; Siddique, S.; Sharma, R.K.; Chaudhary, S. Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN. Measurement 2019, 147, 106870. [Google Scholar] [CrossRef]
- Khademi, F.; Akbari, M.; Jamal, S.M. Prediction of concrete compressive strength using ultrasonic pulse velocity test and artificial neural network modeling. Rev. Romana Mater.—Rom. J. Mater. 2016, 46, 343–350. [Google Scholar]
- Nazari, A.; Pacheco Torgal, F. Predicting compressive strength of different geopolymers by artificial neural networks. Ceram. Int. 2013, 39, 2247–2257. [Google Scholar] [CrossRef] [Green Version]
- Haddad, R.; Haddad, M. Predicting fiber-reinforced polymer–concrete bond strength using artificial neural networks: A comparative analysis study. Struct. Concr. 2021, 22, 38–49. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, P.; Guo, J.; Wang, K. Bonding behavior of concrete matrix and alkali-activated mortar incorporating nano-SiO2 and polyvinyl alcohol fiber: Theoretical analysis and prediction model. Ceram. Int. 2021, 47, 31638–31649. [Google Scholar] [CrossRef]
- Liu, J.C.; Zhang, Z. A machine learning approach to predict explosive spalling of heated concrete. Arch. Civ. Mech. Eng. 2020, 20. [Google Scholar] [CrossRef]
- Asghshahr, M.S.; Rahai, A.; Ashrafi, H. Prediction of chloride content in concrete using ANN and CART. Mag. Concr. Res. 2016, 68, 1085–1098. [Google Scholar] [CrossRef]
- Saleem, M.; Gutierrez, H. Using artificial neural network and non-destructive test for crack detection in concrete surrounding the embedded steel reinforcement. Struct. Concr. 2021, 22, 2849–2867. [Google Scholar] [CrossRef]
- Mohammadhassani, M.; Nezamabadi-Pour, H.; Suhatril, M.; Shariati, M. Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams. Struct. Eng. Mech. 2013, 46, 853–868. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, P.; Wang, T.; Zheng, Y.; Qiu, L.; Sun, S. Compressive strength and anti-chloride ion penetration assessment of geopolymer mortar merging PVA fiber and nano-SiO2 using RBF–BP composite neural network. Nanotechnol. Rev. 2022, 11, 1181–1192. [Google Scholar] [CrossRef]
- Ahmadi, M.; Naderpour, H.; Kheyroddin, A. Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load. Arch. Civ. Mech. Eng. 2014, 14, 510–517. [Google Scholar] [CrossRef]
- Topçu, I.B.; Boǧa, A.R.; Hocaoǧlu, F.O. Modeling corrosion currents of reinforced concrete using ANN. Autom. Constr. 2009, 18, 145–152. [Google Scholar] [CrossRef]
- Boǧa, A.R.; Öztürk, M.; Topçu, I.B. Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI. Compos. B Eng. 2013, 45, 688–696. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, K.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Mechanical properties and prediction of fracture parameters of geopolymer/alkali-activated mortar modified with PVA fiber and nano-SiO2. Ceram. Int. 2020, 46, 20027–20037. [Google Scholar] [CrossRef]
- Raheman, A.; Modani, P.P.O. Prediction of Properties of Self Compacting Concrete Using Artificial Neural Network. Int. J. Eng. Res. Appl. 2013, 3, 333–339. [Google Scholar]
- Gupta, S. Concrete Mix Design Using Artificial Neural Network. J. Today’s Ideas-Tomorrow’s Technol. 2013, 1, 29–43. [Google Scholar] [CrossRef]
- Abu Yaman, M.; Abd Elaty, M.; Taman, M. Predicting the ingredients of self compacting concrete using artificial neural network. Alex. Eng. J. 2017, 56, 523–532. [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A. Matrix design of strain hardening fiber reinforced engineered geopolymer composite. Compos. B Eng. 2016, 89, 253–265. [Google Scholar] [CrossRef]
- Wang, J.; Qian, C.; Zhang, H.; Qu, J.; Guo, J. Neural network model for predicting early strength of cementing materials. Struct. Concr. 2018, 19, 1682–1688. [Google Scholar] [CrossRef]
- Guo, X.; Xiong, G.; Zhang, H. In-situ evaluation of self-healing performance of Engineered Geopolymer Composites (EGC) by ultrasonic method. Mater. Lett. 2020, 280. [Google Scholar] [CrossRef]
- Nguyễn, H.H.; Lương, Q.H.; Choi, J.I.; Ranade, R.; Li, V.C.; Lee, B.Y. Ultra-ductile behavior of fly ash-based engineered geopolymer composites with a tensile strain capacity up to 13.7%. Cem. Concr. Compos. 2021, 122, 104133. [Google Scholar] [CrossRef]
- Pakravan, H.R.; Ozbakkaloglu, T. Synthetic fibers for cementitious composites: A critical and in-depth review of recent advances. Constr. Build. Mater. 2019, 207, 491–518. [Google Scholar] [CrossRef]
- Esonye, C.; Onukwuli, O.D.; Ofoefule, A.U.; Ogah, E.O. Multi-input multi-output (MIMO) ANN and Nelder-Mead’s simplex based modeling of engine performance and combustion emission characteristics of biodiesel-diesel blend in CI diesel engine. Appl. Therm. Eng. 2019, 151, 100–114. [Google Scholar] [CrossRef]
- Atici, U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst. Appl. 2011, 38, 9609–9618. [Google Scholar] [CrossRef]
- Yeh, I.C. Modeling of Strength of High-Performance Concrete Using Artificial Neural Networks. Cem. Concr. Res. 1998, 28, 1797–1808. [Google Scholar] [CrossRef]
- Jena, R.; Pradhan, B. Integrated ANN-cross-validation and AHP-TOPSIS model to improve earthquake risk assessment. Int. J. Disaster Risk Reduct. 2020, 50, 101723. [Google Scholar] [CrossRef]
- Farooq, M.; Bhutta, A.; Banthia, N. Tensile performance of eco-friendly ductile geopolymer composites (EDGC) incorporating different micro-fibers. Cem. Concr. Compos. 2019, 103, 183–192. [Google Scholar] [CrossRef]
- Farooq, M.; Bhutta, A.; Banthia, N. Strain-hardening ambient-cured eco-friendly ductile geopolymer composites. ACI Mater. J. 2020, 117, 181–189. [Google Scholar] [CrossRef]
- Zahid, M.; Shafiq, N.; Razak, S.N.A.; Tufail, R.F. Investigating the effects of NaOH molarity and the geometry of PVA fibers on the post-cracking and the fracture behavior of engineered geopolymer composite. Constr. Build. Mater. 2020, 265. [Google Scholar] [CrossRef]
- Shah, S.F.A.; Chen, B.; Oderji, S.Y.; Aminul Haque, M.; Ahmad, M.R. Comparative study on the effect of fiber type and content on the performance of one-part alkali-activated mortar. Constr. Build. Mater. 2020, 243, 118221. [Google Scholar] [CrossRef]
- Zhang, S.; Li, V.C.; Ye, G. Micromechanics-guided development of a slag/fly ash-based strain-hardening geopolymer composite. Cem. Concr. Compos. 2020, 109, 103510. [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J.; Shaikh, F.U.A. Strain hardening behavior of engineered geopolymer composites: Effects of the activator combination. J. Aust. Ceram. Soc. 2015, 51, 54–60. [Google Scholar]
- Nematollahi, B.; Qiu, J.; Yang, E.H.; Sanjayan, J. Microscale investigation of fiber-matrix interface properties of strain-hardening geopolymer composite. Ceram. Int. 2017, 43, 15616–15625. [Google Scholar] [CrossRef]
- Nematollahi, B.; Ranade, R.; Sanjayan, J.; Ramakrishnan, S. Thermal and mechanical properties of sustainable lightweight strain hardening geopolymer composites. Arch. Civ. Mech. Eng. 2017, 17, 55–64. [Google Scholar] [CrossRef]
- Ohno, M.; Li, V.C. An integrated design method of Engineered Geopolymer Composite. Cem. Concr. Compos. 2018, 88, 73–85. [Google Scholar] [CrossRef]
- Xu, F.; Deng, X.; Peng, C.; Zhu, J.; Chen, J. Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites. Constr. Build. Mater. 2017, 150, 179–189. [Google Scholar] [CrossRef]
- Kan, L.; Wang, W.; Liu, W.; Wu, M. Development and characterization of fly ash based PVA fiber reinforced Engineered Geopolymer Composites incorporating metakaolin. Cem. Concr. Compos. 2020, 108, 103521. [Google Scholar] [CrossRef]
- Chaipimonplin, T.; Vangpaisal, T. Comparison of the Efficiency of Input Determination Techniques with LM and BR Algorithms in ANN for Flood Forecasting, Mun Basin, Thailand. Int. J. Comput. Electr. Eng. 2014, 6, 90–94. [Google Scholar] [CrossRef]
- Yaswanth, K.K.; Revathy, J.; Gajalakshmi, P. Soft Computing Techniques for the Prediction and Analysis of Compressive Strength of Alkali-Activated Alumino-Silicate Based Strain-Hardening Geopolymer composites. Silicon 2022, 14, 1985–2008. [Google Scholar] [CrossRef]
- Verma, M.; Dev, N. Effect of ground granulated blast furnace slag and fly ash ratio and the curing conditions on the mechanical properties of geopolymer concrete. Struct. Concr. 2021. [Google Scholar] [CrossRef]
Mix-Design Parameters | Type of Materials/Curing Criteria |
---|---|
Binders | Class F Fly Ash (FA) and/or Ground Granulated Blast Furnace Slag (GGBS) |
Fine Aggregate | Silica Sand |
Fiber | Poly Vinyl Alcohol (PVA) only |
Activator | Sodium-Based Activators only (8M-NaOH; NaOH:Na2SiO3-2.5) |
Curing | Temperature Exposure Followed by Ambient Curing |
S.No | Mix-Design Influencing Factors | Unit | Training | Testing | ||||
---|---|---|---|---|---|---|---|---|
Min. | Max. | Std. Dev. | Min. | Max. | Std. Dev. | |||
1. | Compressive Strength | MPa | 13.37 | 87.3 | 18.23 | 17.21 | 76.33 | 19.68 |
2. | Tensile Strength | MPa | 1.55 | 6 | 1.21 | 1.6 | 5.3 | 1.27 |
3. | FA Content | kg/m3 | 0 | 1620 | 306.75 | 425 | 1246.1 | 291.42 |
4. | GGBS Content | kg/m3 | 0 | 562.8 | 155.58 | 0 | 320 | 147.77 |
5. | Sand Content | kg/m3 | 0 | 1172 | 396.56 | 0 | 1172 | 374.54 |
6. | Activator/Binder ratio | -- | 0.364 | 1.3 | 0.28 | 0.3988 | 1.3 | 0.27 |
7. | PVA Fiber | Vf(%) | 0.5 | 3 | 0.66 | 0.5 | 3 | 0.79 |
8. | Curing Temperature x Hours | °C.h | 22 | 1440 | 496.13 | 25 | 1440 | 564.79 |
9. | Ambient Curing Duration | days | 3 | 70 | 19.69 | 3 | 28 | 10.91 |
ANN Model | R | |||
---|---|---|---|---|
Training | Self-Validation | Self-Testing | Overall | |
ANN [2:16:16:7] | 0.91 | 0.91 | 0.87 | 0.90 |
ANN [2:16:25:7] | 0.80 | 0.75 | 0.85 | 0.79 |
ANN [2:16:16:8:7] | 0.81 | 0.95 | 0.88 | 0.83 |
ANN [2:16:16:25:7] | 0.82 | 0.92 | 0.93 | 0.86 |
ANN [2:16:32:16:7] | 0.86 | 0.91 | 0.87 | 0.86 |
(a) | ||||||||||||
Ref | [39] | [40] | [40] | [44] | [46] | [48] | [49] | [35] | [47] | [48] | R2 | |
Exp | 938 | 1134 | 1246.1 | 653.84 | 607.14 | 510 | 520 | 525 | 510 | 425 | ||
ANN | ||||||||||||
16-16 | 994.3 | 1356 | 1327.8 | 1029.7 | 331.7 | 494.2 | 537.8 | 817.1 | 196.1 | 393.6 | 0.74 | |
16-25 | 1126.7 | 820.3 | 1445 | 1030.6 | 509.2 | 450 | 1574.5 | 632.2 | 478.9 | 169.3 | 0.28 | |
16-16-25 | 931.2 | 908 | 990.1 | 882.7 | 776.2 | 414.7 | 1063.2 | 966.2 | 421.5 | 489.8 | 0.27 | |
16-16-8 | 907.4 | 1278.4 | 881 | 1040.9 | 674.6 | 1196.4 | 894.7 | 428.2 | 694.7 | 500.2 | 0.23 | |
16-32-16 | 815.3 | 1163.1 | 879.3 | 824.2 | 752.1 | 241.5 | 835.7 | 757.5 | 877.3 | 565.7 | 0.35 | |
(b) | ||||||||||||
Ref | [39] | [40] | [40] | [44] | [46] | [48] | [49] | [35] | [47] | [48] | R2 | |
Exp | 235 | 252 | 0 | 0 | 0 | 320 | 0 | 0 | 320 | 0 | ||
ANN | ||||||||||||
16-16 | 228.2 | 560.8 | 0 | 0 | 0 | 324.6 | 0 | 0 | 29.6 | 0 | 0.48 | |
16-25 | 562.4 | 356.8 | 15.9 | 0 | 0 | 470.6 | 519.2 | 0 | 513.9 | 0 | 0.58 | |
16-16-25 | 122.7 | 124 | 87.6 | 62.5 | 46.5 | 294 | 89.7 | 76.8 | 378.8 | 158.7 | 0.62 | |
16-16-8 | 64.8 | 66 | 44 | 34.6 | 172.3 | 150.7 | 63.9 | 106.8 | 246.5 | 80.2 | 0.23 | |
16-32-16 | 150.2 | 84.2 | 47.1 | 119.3 | 63.1 | 314.5 | 40.2 | 103 | 426 | 213.3 | 0.49 | |
(c) | ||||||||||||
Ref | [39] | [40] | [40] | [44] | [46] | [48] | [49] | [35] | [47] | [48] | R2 | |
Exp | 1172 | 0 | 392.3 | 281.53 | 348.57 | 0 | 275.9 | 278.6 | 0 | 800 | ||
ANN | ||||||||||||
16-16 | 1172 | 0 | 444.2 | 308.9 | 0.1 | 0 | 0 | 10.2 | 47.4 | 1001.4 | 0.85 | |
16-25 | 0 | 0 | 1113.2 | 308.9 | 0.8 | 0 | 1085.2 | 193.9 | 1065.1 | 0 | 0.07 | |
16-16-25 | 955.2 | 10.6 | 723.8 | 33.7 | 339.4 | 28.9 | 302.2 | 732.8 | 33.3 | 819 | 0.7 | |
16-16-8 | 1164.2 | 117.7 | 869.9 | 212.2 | 192.4 | 804.9 | 675.6 | 83 | 118.5 | 902.4 | 0.46 | |
16-32-16 | 1073 | 0.3 | 527 | 0.9 | 1.1 | 0.2 | 84.6 | 1020.6 | 690.1 | 560.6 | 0.31 | |
(d) | ||||||||||||
Ref | [39] | [40] | [40] | [44] | [46] | [48] | [49] | [35] | [47] | [48] | R2 | |
Exp | 1.3 | 0.3988 | 0.471 | 0.45 | 0.4 | 0.42 | 0.53 | 0.55 | 0.42 | 0.6 | ||
ANN | ||||||||||||
16-16 | 0.8 | 0.41 | 0.46 | 0.39 | 0.46 | 0.5 | 0.55 | 0.46 | 0.73 | 0.69 | 0.44 | |
16-25 | 0.39 | 0.39 | 0.46 | 0.36 | 0.37 | 0.37 | 0.36 | 0.67 | 0.47 | 1.2 | 0 | |
16-16-25 | 1.09 * | 1.09 * | 1.04 * | 1.01 * | 1.08 * | 1.18 * | 1.11 * | 1.03 * | 1.16 * | 1.21 * | 0 | |
16-16-8 | 1.24 * | 0.5 | 0.88 | 0.38 | 0.46 | 0.72 | 0.43 | 1.18 * | 0.48 | 1.18 * | 0.41 | |
16-32-16 | 1.09 * | 1.24 * | 1.24 * | 1.26 * | 1.26 * | 1.05 * | 1.29 * | 1.18 * | 1.24 * | 1.05 * | 0.21 | |
(e) | ||||||||||||
Ref | [39] | [40] | [40] | [44] | [46] | [48] | [49] | [35] | [47] | [48] | R2 | |
Exp | 1.5 | 2 | 2 | 2 | 1.5 | 0.5 | 1.5 | 1.1 | 1 | 3 | ||
ANN | ||||||||||||
16-16 | 1.2 | 1.8 | 1.5 | 2.3 * | 2.2 * | 1.3 | 1.3 | 1.3 | 1.7 | 1.8 | 0.21 | |
16-25 | 3.0 * | 1.3 | 0.1 | 1.9 | 0.4 | 0.5 | 0 | 1.1 | 3.0 * | 1 | 0.01 | |
16-16-25 | 0.7 | 2.6 * | 0.6 | 2.6 * | 2.5 * | 2.4 * | 1.1 | 0.6 | 2.1 * | 1 | 0.06 | |
16-16-8 | 0.1 | 1.6 | 0.4 | 1 | 1.6 | 0.5 | 0.7 | 0.2 | 1.1 | 0.1 | 0 | |
16-32-16 | 1.4 | 2.7 * | 1.5 | 2.5 * | 2.7 * | 2.2 * | 1.8 | 2.3 * | 1.5 | 2 | 0.01 | |
(f) | ||||||||||||
Ref | [39] | [40] | [40] | [44] | [46] | [48] | [49] | [35] | [47] | [48] | R2 | |
Exp | 25 | 25 | 240 | 1440 | 1440 | 25 | 160 | 160 | 25 | 320 | ||
ANN | ||||||||||||
16-16 | 23 | 22 | 23 | 1440 | 546 | 22 | 1068 | 69 | 23 | 479 | 0.46 | |
16-25 | 22 | 28 | 22 | 1440 | 25 | 22 | 22 | 22 | 22 | 22 | 0.43 | |
16-16-25 | 41 | 525 | 63 | 1436 | 1415 | 37 | 367 | 77 | 23 | 39 | 0.86 | |
16-16-8 | 100 | 158 | 251 | 1436 | 33 | 34 | 943 | 119 | 24 | 160 | 0.23 | |
16-32-16 | 26 | 1179 | 86 | 1062 | 1398 | 40 | 645 | 61 | 22 | 42 | 0.47 | |
(g) | ||||||||||||
Ref | [39] | [40] | [40] | [44] | [46] | [48] | [49] | [35] | [47] | [48] | R2 | |
Exp | 7 | 28 | 28 | 3 | 28 | 7 | 7 | 7 | 28 | 14 | ||
ANN | ||||||||||||
16-16 | 59 | 70 | 68 | 3 | 60 | 4 | 3 | 4 | 7 | 3 | 0.37 | |
16-25 | 70 | 20 | 70 | 3 | 70 | 47 | 65 | 56 | 70 | 70 | 0.06 | |
16-16-25 | 30 | 9 | 33 | 7 | 9 | 5 | 22 | 32 | 34 | 13 | 0.02 | |
16-16-8 | 14 | 9 | 10 | 5 | 7 | 14 | 6 | 30 | 12 | 18 | 0.06 | |
16-32-16 | 41 | 5 | 36 | 5 | 5 | 7 | 26 | 34 | 42 | 19 | 0 |
Ref | Compressive Strength (MPa) | Tensile Strength (MPa) | ||||
---|---|---|---|---|---|---|
Experimental Data | Predicted Data | RMSE | Experimental Data | Predicted Data | RMSE | |
[39] | 29.1 | 29.4 | 0.33 | 2.64 | 2.90 | 0.26 |
[40] | 59.6 | 57.5 | 2.09 | 4.2 | 5.09 | 0.11 |
[38] | 20.9 | 20.7 | 0.16 | 3.2 | 2.68 | 0.52 |
[44] | 56.8 | 61.7 | 4.86 | 5 | 4.07 | 0.93 |
[45] | 43.1 | 28.3 | 14.82 | 5.3 | 4.46 | 0.84 |
[48] | 53.5 | 48.8 | 4.72 | 1.6 | 1.52 | 0.08 |
[49] | 22.06 | 15.7 | 6.36 | 3.7 | 1.75 | 1.95 |
[35] | 17.21 | 14.1 | 3.07 | 2.48 | 1.85 | 0.63 |
[48] | 76.33 | 72.7 | 3.59 | 4.4 | 3.79 | 0.61 |
[47] | 37.2 | 36.3 | 0.90 | 1.97 | 1.84 | 0.13 |
Mean | R2 = 0.936 | RMSE = 4.09 | R2 = 0.80 | RMSE = 0.61 |
Output/Mix Factor | ANN Model | ‘Tacked-Together’ Mix Design | R2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fly Ash | 16-16 | 994.3 | 1356.0 | 1327.8 | 1029.7 | 331.7 | 494.2 | 537.8 | 817.1 | 196.1 | 393.6 | 0.74 |
GGBS | 16-16-25 | 122.7 | 124.0 | 87.6 | 62.5 | 46.5 | 294.0 | 89.7 | 76.8 | 378.8 | 158.7 | 0.62 |
Sand | 16-16 | 1172.0 | 0.0 | 444.2 | 308.9 | 0.1 | 0.0 | 0.0 | 10.2 | 47.4 | 1001.4 | 0.85 |
Act/Bin | 16-16 | 0.80 | 0.41 | 0.46 | 0.39 | 0.46 | 0.50 | 0.55 | 0.46 | 0.73 | 0.69 | 0.44 |
PVA * | 16-16 | 1.2 | 1.8 | 1.5 | 2 * | 2 * | 1.3 | 1.3 | 1.3 | 1.7 | 1.8 | 0.21 |
CT * Hrs | 16-16-25 | 41 | 525 | 63 | 1436 | 1415 | 37 | 367 | 77 | 23 | 39 | 0.86 |
Ambient | 16-16 | 59 | 70 | 68 | 3 | 60 | 4 | 3 | 4 | 7 | 3 | 0.37 |
(a) | |||||||||||
Ref | Experimental CS | ANN 16-16 | RMSE | ANN 16-25 | RMSE | ANN 16-16-25 | RMSE | ANN 16-16-8 | RMSE | ANN 16-32-16 | RMSE |
[39] | 29.1 | 70.40 | 41.30 | 24.16 | 4.94 | 23.84 | 5.26 | 13.64 | 15.46 | 37.84 | 8.74 |
[40] | 59.6 | 86.53 | 26.93 | 75.77 | 16.17 | 50.17 | 9.43 | 49.48 | 10.12 | 74.84 | 15.24 |
[38] | 20.9 | 30.02 | 9.12 | 13.91 | 6.99 | 27.15 | 6.25 | 14.65 | 6.25 | 23.15 | 2.25 |
[44] | 56.8 | 64.21 | 7.41 | 61.48 | 4.68 | 77.38 | 20.58 | 45.14 | 11.66 | 63.45 | 6.65 |
[45] | 43.1 | 17.41 | 25.69 | 32.96 | 10.14 | 23.43 | 19.67 | 21.83 | 21.27 | 57.55 | 14.45 |
[48] | 53.5 | 44.32 | 9.18 | 79.91 | 26.41 | 34.79 | 18.71 | 25.12 | 28.38 | 47.63 | 5.87 |
[49] | 22.06 | 14.59 | 7.47 | 23.03 | 0.97 | 33.83 | 11.77 | 32.12 | 10.06 | 22.39 | 0.33 |
[35] | 17.21 | 14.79 | 2.42 | 17.12 | 0.09 | 25.22 | 8.01 | 19.55 | 2.34 | 31.92 | 14.71 |
[48] | 76.33 | 13.92 | 62.41 | 74.58 | 1.75 | 84.36 | 8.03 | 32.43 | 43.90 | 82.33 | 6.00 |
[47] | 37.2 | 18.67 | 18.53 | 34.84 | 2.36 | 15.13 | 22.07 | 13.46 | 23.74 | 26.14 | 11.06 |
Mean RMSE | 21.05 | 7.45 | 12.98 | 17.32 | 8.53 | ||||||
(b) | |||||||||||
Ref | Experimental TS | ANN 16-16 | RMSE | ANN 16-25 | RMSE | ANN 16-16-25 | RMSE | ANN 16-16-8 | RMSE | ANN 16-32-16 | RMSE |
[39] | 2.64 | 3.94 | 1.30 | 2.78 | 0.14 | 2.12 | 0.52 | 2.27 | 0.37 | 2.59 | 0.05 |
[40] | 4.2 | 5.74 | 1.54 | 5.11 | 0.91 | 3.51 | 0.69 | 2.33 | 1.87 | 5.10 | 0.90 |
[38] | 3.2 | 4.40 | 1.20 | 3.04 | 0.16 | 2.01 | 1.19 | 1.76 | 1.44 | 2.00 | 1.20 |
[44] | 5 | 4.38 | 0.62 | 4.42 | 0.58 | 5.33 | 0.33 | 4.64 | 0.36 | 4.91 | 0.09 |
[45] | 5.3 | 3.01 | 2.29 | 5.30 | 0.00 | 4.42 | 0.88 | 2.23 | 3.07 | 5.24 | 0.06 |
[48] | 1.6 | 3.20 | 1.60 | 1.56 | 0.04 | 3.53 | 1.93 | 1.96 | 0.36 | 3.35 | 1.75 |
[49] | 3.7 | 3.21 | 0.49 | 3.69 | 0.01 | 2.52 | 1.18 | 3.06 | 0.64 | 3.22 | 0.48 |
[35] | 2.48 | 1.86 | 0.62 | 2.92 | 0.44 | 1.96 | 0.52 | 2.70 | 0.22 | 2.40 | 0.08 |
[48] | 4.4 | 1.88 | 2.52 | 4.30 | 0.10 | 5.27 | 0.87 | 2.85 | 1.55 | 5.40 | 1.00 |
[47] | 1.97 | 1.78 | 0.19 | 2.28 | 0.31 | 1.90 | 0.07 | 2.04 | 0.07 | 2.84 | 0.87 |
Mean RMSE | 1.24 | 0.27 | 0.82 | 0.99 | 0.65 |
Experimental CS | Predicted CS | RMSE | Experimental TS | Predicted TS | RMSE |
---|---|---|---|---|---|
29.1 | 40.39 | 11.29 | 2.64 | 2.69 | 0.05 |
59.6 | 57.72 | 1.88 | 4.2 | 4.59 | 0.39 |
20.9 | 17.81 | 3.09 | 3.2 | 3.10 | 0.10 |
56.8 | 55.31 | 1.49 | 5 | 3.54 | 1.46 |
43.1 | 44.59 | 1.49 | 5.3 | 5.72 | 0.42 |
53.5 | 57.71 | 4.21 | 1.6 | 3.74 | 2.14 |
22.06 | 28.91 | 6.85 | 3.7 | 2.97 | 0.73 |
17.21 | 26.01 | 8.80 | 2.48 | 2.60 | 0.12 |
76.33 | 83.12 | 6.79 | 4.4 | 4.81 | 0.41 |
37.2 | 25.23 | 11.97 | 1.97 | 1.89 | 0.08 |
Mean | RMSE = 5.76 | RMSE = 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuppusamy, Y.; Jayaseelan, R.; Pandulu, G.; Sathish Kumar, V.; Murali, G.; Dixit, S.; Vatin, N.I. Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites. Materials 2022, 15, 3443. https://doi.org/10.3390/ma15103443
Kuppusamy Y, Jayaseelan R, Pandulu G, Sathish Kumar V, Murali G, Dixit S, Vatin NI. Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites. Materials. 2022; 15(10):3443. https://doi.org/10.3390/ma15103443
Chicago/Turabian StyleKuppusamy, Yaswanth, Revathy Jayaseelan, Gajalakshmi Pandulu, Veerappan Sathish Kumar, Gunasekaran Murali, Saurav Dixit, and Nikolai Ivanovich Vatin. 2022. "Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites" Materials 15, no. 10: 3443. https://doi.org/10.3390/ma15103443
APA StyleKuppusamy, Y., Jayaseelan, R., Pandulu, G., Sathish Kumar, V., Murali, G., Dixit, S., & Vatin, N. I. (2022). Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites. Materials, 15(10), 3443. https://doi.org/10.3390/ma15103443