Waste Polymer and Lubricating Oil Used as Asphalt Rheological Modifiers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. The Conventional Performance
3.2. Temperature Sweep
3.3. Morphology and Microstructure
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, X.; Yan, N. A brief overview of renewable plastics. Mater. Today Sustain. 2020, 7, 100031. [Google Scholar] [CrossRef]
- Chawla, K.; Singh, R.; Singh, J. Segregation and Recycling of Plastic Solid Waste: A Review. In Advances in Materials Science and Engineering; Springer: Singapore, 2020; pp. 205–221. [Google Scholar]
- Ojogbo, E.; Ogunsona, E.O.; Mekonnen, T.H. Chemical and physical modifications of starch for renewable polymeric materials. Mater. Today Sustain. 2020, 7, 100028. [Google Scholar] [CrossRef]
- Saleh, H.; Al-Kahlidi, M.M.A.; Abulridha, H.A.; Banoon, S.R.; Abdelzaher, M.A. Current Situation and Future Prospects for Plastic Waste in Maysan Governorate: Effects and Treatment During the COVID-19 Pandemic. Egypt. J. Chem. 2021, 64, 4449–4460. [Google Scholar] [CrossRef]
- Rahimi, A.; García, J.M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046. [Google Scholar] [CrossRef]
- Kumar, S.; Panda, A.K.; Singh, R.K. A review on tertiary recycling of high-density polyethylene to fuel. Resour. Conserv. Recycl. 2011, 55, 893–910. [Google Scholar] [CrossRef]
- Sharuddin, S.D.A.; Abnisa, F.; Daud, W.M.A.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Abbas, R.; Shehata, N.; Mohamed, E.A.; Salah, H.; Abdelzaher, M. Environmental safe disposal of cement kiln dust for the production of geopolymers. Egypt. J. Chem. 2021, 64, 7429–7437. [Google Scholar]
- Singh, P.; Tophel, A.; Swamy, A.K. Properties of asphalt binder and asphalt concrete containing waste polyethylene. Pet. Sci. Technol. 2017, 35, 495–500. [Google Scholar] [CrossRef]
- Singh, P.; Swamy, A.K. Effect of aging level on viscoelastic properties of asphalt binder containing waste polyethylene. Int. J. Sustain. Eng. 2019, 12, 141–148. [Google Scholar] [CrossRef]
- Tantawy, M.A.; El-Roudi, A.M.; Abdalla, E.M.; Abdelzaher, M.A. Fire resistance of sewage sludge ash blended cement pastes. J. Eng. 2013, 2013, 361582. [Google Scholar] [CrossRef] [Green Version]
- Cooper, S.B., Jr.; Mohammad, L.N.; Elseifi, M.A. Laboratory performance of asphalt mixtures containing recycled asphalt shingles and re-refined engine oil bottoms. J. Mater. Civ. Eng. 2017, 29, 04017106. [Google Scholar] [CrossRef]
- Rabeea, M.A.; Zaidan, T.A.; Ayfan, A.H.; Younis, A.A. High porosity activated carbon synthesis using asphaltene particles. Carbon Lett. 2020, 30, 199–205. [Google Scholar] [CrossRef]
- Klimisch, H.J.; Andreae, M.; Tillman, U. Robust Summary of Information; American Petroleum Institute: Washington, DC, USA, 2003; p. 9. [Google Scholar]
- Bulatović, V.O.; Rek, V.; Marković, K.J. Polymer modified bitumen. Mater. Res. Innov. 2012, 16, 1–6. [Google Scholar] [CrossRef]
- Shbeeb, M.T. The use of polyethylene in hot asphalt mixtures. Am. J. Appl. Sci. 2007, 4, 390–396. [Google Scholar]
- Robinson, H. Polymers in Asphalt; Smithers Rapra Publishing: Shropshire, UK, 2005; Volume 15. [Google Scholar]
- Elkhouly, H.I.; Abdelzaher, M.A.; El-Kattan, I.M. Experimental and Modeling Investigation of Physicomechanical Properties and Firing Resistivity of Cement Pastes Incorporation of Micro-Date Seed Waste. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021. [Google Scholar] [CrossRef]
- Hussein, A.A.; Hamdoon, A.A. The Use of a Mixture (Spent Lubricating Oils: Rubber) and Catalytic Air Blowing Process in the Rheological Modification of Asphalt. Adv. Mech. 2021, 9, 206–213. [Google Scholar]
- Al-Azzawi, A.; Hamdoon, A. Mechanical performance study of asphalt by waste plastics and waste engine oil. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2213, p. 020158. [Google Scholar]
- Yao, H.; You, Z.; Li, L.; Lee, C.H.; Wingard, D.; Yap, Y.K.; Shi, X.; Goh, S.W. Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica. J. Mater. Civ. Eng. 2013, 25, 1619–1630. [Google Scholar] [CrossRef] [Green Version]
- Goh, S.W.; You, Z. A preliminary study of the mechanical properties of asphalt mixture containing bottom ash. Can. J. Civ. Eng. 2008, 35, 1114–1119. [Google Scholar] [CrossRef]
- Abdelzaher, M.A. Experiential investigation on the effect of heavy fuel oil substitution by high sulfur petcoke on the physico-mechanical features and microstructure of white cement composites. Eng. Res. Express 2021, 3, 015028. [Google Scholar] [CrossRef]
- Matti, R.R.; Owaid, K.A. Rheological modifications of the asphalt-polymer system using microwave technology. J. Educ. Sci. 2020, 29, 26–44. [Google Scholar] [CrossRef]
- El-Kattan, I.M.; Abdelzaher, M.A.; Farghali, A.A. Positive impact of ultra fine-ceramic waste on the physico-mechanical features and microstructure of white cement pastes composites. J. Mater. Res. Technol. 2020, 9, 9395–9402. [Google Scholar] [CrossRef]
- Han, D.; Wei, L.; Zhang, J. Experimental study on performance of asphalt mixture designed by different method. Procedia Eng. 2016, 137, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Shirini, B.; Imaninasab, R. Performance evaluation of rubberized and SBS modified porous asphalt mixtures. Constr. Build. Mater. 2016, 107, 165–171. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Asphalt and Asphalt Mixtures for Highway Engineering. Ministry of Transport: Beijing, China, 2011.
- T350-19; Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State and Highway Transportation Officials: Washington, DC, USA, 2019.
- Wróbel, M.; Woszuk, A.; Ratajczak, M.; Franus, W. Properties of reclaimed asphalt pavement mixture with organic rejuvenator. Constr. Build. Mater. 2021, 271, 121514. [Google Scholar] [CrossRef]
- McDaniel, R.S.; Anderson, R.M. Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method: Technician’s Manual (No. Project D9-12 FY’97); National Research Council (US), Transportation Research Board: Washington, DC, USA, 2001. [Google Scholar]
- West, R.; Rodezno, C.; Julian, G.; Prowell, D. Engineering Properties and Field Performance of Warm Mix Asphalt Technologies; NCHRP Final Report Project, (09-47A); National Cooperative Highway Research Program: Washington, DC, USA, 2014. [Google Scholar]
- Hicks, R.G.; Tighe, S.; Cheng, D. Rubber Modified Asphalt Technical Manual. In Proceedings; Canadian Technical Asphalt Association: West Kelowna, BC, Canada, 2012; Volume 40, pp. 57–77. [Google Scholar]
- Iqbal, M.; Hussain, A.; Khattak, A.; Ahmad, K. Improving the Aging Resistance of Asphalt by Addition of Polyethylene and Sulphur. Civ. Eng. J. 2020, 6, 1017–1030. [Google Scholar] [CrossRef]
- Petersen, J.C. Chemical composition of asphalt as related to asphalt durability. In Developments in Petroleum Science; Elsevier: Amsterdam, The Netherlands, 2000; Volume 40, pp. 363–399. [Google Scholar]
- Balboul, B.A.; Abdelzaher, M.; Hamouda, A.S.; Zaki, A.H. Nano titania combined with micro silica reinforced limestone cement: Physico-mechanical investigation. Egypt. J. Chem. 2019, 62, 1105–1115. [Google Scholar]
- Abdelzaher, M.A.; Hamouda, A.S.; Ismail, I.M.; El-Sheikh, M.A. Nano titania reinforced limestone cement: Physico-mechanical investgation. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2018; Volume 786, pp. 248–257. [Google Scholar]
- Shawkey, M.A.; Abdelzaher, M.A.; Mahmoud, H.M.; Rashad, M.M. Monitoring of acoustic emission behaviour during early-age cement paste hydration. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sanya, Hainan, 12–14 November 2021; IOP Publishing: Bristol, UK, 2021; Volume 1046, p. 012020. [Google Scholar]
- Abdelzaher, M.A.; Shehata, N. Hydration and synergistic features of nanosilica-blended high alkaline white cement pastes composites. Appl. Nanosci. 2022. [Google Scholar] [CrossRef]
- Kunanusont, N.; Sangpetngam, B.; Somwangthanaroj, A. Asphalt Incorporation with Ethylene Vinyl Acetate (EVA) Copolymer and Natural Rubber (NR) Thermoplastic Vulcanizates (TPVs): Effects of TPV Gel Content on Physical and Rheological Properties. Polymers 2021, 13, 1397. [Google Scholar] [CrossRef]
Specification | Ethylene–Vinyl Acetate (C6H10O2) | Polyvinyl Chloride (CH2CHCl)n |
---|---|---|
Molecular weight | 86.09 | 233.00 |
Bulk density | 0.93 ± 0.02 | 0.50 ± 0.02 |
Specific gravity | 2.0 | 1.4 |
Degree of polymerization | 75–95%. | 1000 ± 50 |
Melting point °C | 88 | - |
K-Value | - | 66 |
Rheological Properties | Iraqi Paving | The Stander Testing Measurements (JTG E20,2011) [29] | ||||
---|---|---|---|---|---|---|
Minimum | Maximum | Mean | Minimum | Maximum | Mean | |
Softening point (%) | 54 | 60 | 60 | 54 | 65 | 60 |
Penetration (100 gm, 5 s, 25 °C) | 40 | 50 | 43 | 20 | 40 | 30 |
Degree of Ductility (cm 25 °C) | 10 | - | 11 | 15 | - | 15 |
Rheological Properties | Minimu | Maximum | Mean |
---|---|---|---|
Softening point (°C) | 57 | 66 | 60 |
Penetration (100 gm 5 s 25 °C) | 18 | 40 | 28 |
Degree of Ductility (cm, 25 °C) | 10 | - | 11 |
Mix Title | Mix Composition | |||
---|---|---|---|---|
AH#70 Asphalt by Weight (%) | PW and ULO Replacement by a Fixed Ratio (1:1:1) | Sulfur Addition by Fixed Weight (%) | Temp. | |
AS | 100.0 | 0.0 | 1.0 | 180 °C |
AS-1 | 99.0 | 1.0 | ||
AS-2 | 98.0 | 2.0 | ||
AS-3 | 97.0 | 3.0 | ||
AS-4 | 96.0 | 4.0 | ||
AS-5 | 95.0 | 5.0 | ||
AS-6 | 94.0 | 6.0 |
Mix Title | Conventional Properties | ||||
---|---|---|---|---|---|
Ductility (cm) | Softening Point | Penetration | Penetration Index | Asphaltens % | |
AS | >150 | 50 | 44.3 | −1.461 | 20.1 |
AS-1 | >150 | 54 | 41.5 | −0.670 | 23.1 |
AS-2 | >150 | 57 | 41.9 | −0.004 | 25.3 |
AS-3 | >150 | 56 | 42.1 | −0.625 | 25.8 |
AS-4 | >150 | 58 | 41.8 | +0.196 | 26.5 |
AS-5 | 133 | 59 | 40.7 | +0.337 | 29.2 |
AS-6 | 67 | 65 | 37.3 | +1.032 | 31.2 |
Mix Title | Aging of Temp. Sweep | Rheological Properties | ||||
---|---|---|---|---|---|---|
Ductility (cm) | Softening Point | Penetration | Penetration Index | Weight Loss | ||
AS | Before | >150 | 50 | 44.3 | −1.461 | - |
After | >150 | 54 | 42.4 | −0.618 | 0.062 | |
AS-1 | Before | >150 | 57 | 41.9 | −0.004 | - |
After | >150 | 58 | 41.4 | +0.174 | 0.041 | |
AS-2 | Before | >150 | 57 | 42.1 | −0.625 | - |
After | >150 | 58 | 41.9 | −0.004 | 0.039 | |
AS-3 | Before | >150 | 56 | 42.1 | −0.625 | - |
After | >150 | 58 | 41.6 | +0.185 | 0.037 | |
AS-4 | Before | >150 | 55 | 40.8 | −0.615 | - |
After | >150 | 58 | 40.3 | +0.144 | 0.031 | |
AS-6 | Before | >150 | 52 | 39.7 | −0.612 | - |
After | >150 | 57 | 40.1 | +0.135 | 0.030 |
Mix Title | Multiple Stress Creep Recovery Test | |||
---|---|---|---|---|
Asphalt | Stability (KN) | Crawling (mm) | MQ | |
AS | 4.5 | 11.7 | 5.20 | 2.25 |
AS-1 | 16.4 | 3.10 | 5.29 | |
AS-2 | 11.7 | 2.80 | 6.10 | |
AS-3 | 14.6 | 3.40 | 4.29 | |
AS-4 | 7.0 | 2.4 | 2.91 | |
AS-5 | 5.0 | 0.0 | 0.0 | |
AS-6 | 4.0 | 0.0 | 0.0 | |
AS * | 7.0 (minimum) | 2.40 | 3.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owaid, K.A.; Hamdoon, A.A.; Matti, R.R.; Saleh, M.Y.; Abdelzaher, M.A. Waste Polymer and Lubricating Oil Used as Asphalt Rheological Modifiers. Materials 2022, 15, 3744. https://doi.org/10.3390/ma15113744
Owaid KA, Hamdoon AA, Matti RR, Saleh MY, Abdelzaher MA. Waste Polymer and Lubricating Oil Used as Asphalt Rheological Modifiers. Materials. 2022; 15(11):3744. https://doi.org/10.3390/ma15113744
Chicago/Turabian StyleOwaid, Khalid Ahmed, Ammar Ahmed Hamdoon, Rand Raad Matti, Mohanad Yakdhan Saleh, and M. A. Abdelzaher. 2022. "Waste Polymer and Lubricating Oil Used as Asphalt Rheological Modifiers" Materials 15, no. 11: 3744. https://doi.org/10.3390/ma15113744
APA StyleOwaid, K. A., Hamdoon, A. A., Matti, R. R., Saleh, M. Y., & Abdelzaher, M. A. (2022). Waste Polymer and Lubricating Oil Used as Asphalt Rheological Modifiers. Materials, 15(11), 3744. https://doi.org/10.3390/ma15113744