Tribocorrosion and Abrasive Wear Test of 22MnCrB5 Hot-Formed Steel
Abstract
:1. Introduction
- High abrasion resistance of boron steel.
- Large possibilities of forming complex shapes (greater than in the case of cold-forming).
- Intense abrasion in the abrasive mass—the influence of the shaping technology on the material properties (especially hardness) determining the abrasion resistance was analyzed.
- Tribocorrosion—combined action of friction and corrosive environment, where the influence of the shaping technology on the complex properties (hardness, corrosion resistance) was analyzed.
- Determination of material loss for tested samples of 22MnCrB5 (after the hot-forming process) under tribocorrosion conditions on a laboratory stand.
- Determination of material loss for tested samples of 22MnCrB5 (after the hot-forming process) under the abrasive wear test in a spinning bowl unit.
- Comparison of sample wear in the tribocorrosion test and abrasive wear test without the influence of corrosive factors, with results for 22MnCrB5 cold-formed steel.
2. Materials
3. Research Methods
3.1. Tribocorrosion Test
3.2. Abrasive Wear Test
4. Results of Research
4.1. Tribocorrosion Test Result
4.2. Abrasive Wear Test Result
5. Discussion
6. Conclusions
- In the case of both tested materials (in the cold-formed state and the hot-forming process), a clear synergy effect of friction and corrosion was identified in the tribocorrosion process. This effect was most likely caused by the influence of frictional interactions on the course of electrochemical phenomena on the material surface.
- The test results indicated that 22MnCrB5 hot-formed steel obtained significantly greater resistance to tribocorrosion. For this material, a smaller material loss was found after tribocorrosion tests, as well as a smaller share of the friction–corrosion synergy effect in total wear.
- The hot-forming process significantly improved the anti-wear properties of boron steel due to the change in the internal structure (mechanical properties) and an additional AlSi coating applied on the surface of the sample.
- The performed laboratory tests showed that the use of the hot-forming technology for boron steel significantly reduced the abrasive wear and limited the corrosion steel of the process. This may result in an increase in the operation time of agricultural and machinery components working in soil.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chintha, A.R. Metallurgical aspects of steels designed to resist abrasion, and impact-abrasion wear. Mater. Sci. Technol. 2019, 35, 1133–1148. [Google Scholar] [CrossRef] [Green Version]
- Krawiec, P.; Waluś, K.; Warguła, Ł.; Adamiec, J. Wear evaluation of elements of V-belt transmission with the application of optical microscope. MATEC Web Conf. 2018, 157, 01009. [Google Scholar] [CrossRef] [Green Version]
- Trembach, B.; Grin, A.; Subbotina, V.; Vynar, V.; Knyazev, S.; Zakiev, V.; Trembach, I.; Kabatskyi, O. Effect of Exothermic Addition (CuO-Al) on the Structure, Mechanical Properties and Abrasive Wear Resistance of the Deposited Metal During Self-Shielded Flux-Cored Arc Welding. Tribol. Ind. 2021, 43, 452–464. [Google Scholar] [CrossRef]
- Ulbrich, D.; Kowalczyk, J.; Stachowiak, A.; Sawczuk, W.; Selech, J. The Influence of Surface Preparation of the Steel during the Renovation of the Car Body on Its Corrosion Resistance. Coatings 2021, 4, 384. [Google Scholar] [CrossRef]
- Devimeenakhi, S.; Anandhi, M.; Velkannan, V.; Balaji, G. Effect of green tea in artificial saliva on the corrosion resistance behaviour of stainless steel. Mater. Today Proc. 2021; in press. [Google Scholar] [CrossRef]
- Munoz, A.I.; Espallargas, N.; Mischler, S. Tribocorrosion; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Kajdas, C.z.; Hiratsuka, K. (Eds.) Tribocatalysis, Tribochemistry, and Tribocorrosion; Pan Stanford Publishing: Singapore, 2018. [Google Scholar]
- Landolt, D.; Mischler, S. (Eds.) Tribocorrosion of Passive Metals and Coatings; Woodhead Publishing in Materials: Cambridge, UK, 2011. [Google Scholar]
- Jemmely, P.; Mischler, S.; Landolt, D. Electrochemical modeling of passivation phenomena in tribocorrosion. Wear 2000, 237, 63–76. [Google Scholar] [CrossRef]
- Olsson, C.-O.A.; Landolt, D. Passive films on stainless steels—Chemistry, structure and growth. Electrochim. Acta 2003, 48, 1093–1104. [Google Scholar] [CrossRef]
- Mischler, S. Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation. Tribol. Int. 2008, 41, 573–583. [Google Scholar] [CrossRef]
- Papageorgiou, N.; Mischler, S. Electrochemical simulation of the current and potential response in sliding tribocorrosion. Tribol. Lett. 2012, 48, 281–283. [Google Scholar] [CrossRef]
- Songbo, Y.; Li, D.Y. A new phenomenpn observed in determining the wear-corrosion synergy during a corrosive sliding wear test. Tribol. Lett. 2008, 29, 45–52. [Google Scholar]
- Landolt, D.; Mischler, S.; Stemp, M. Electrochemical methods in tribocorrosion: A critical appraisal. Electrochim. Acta 2001, 46, 3913–3929. [Google Scholar] [CrossRef]
- Stack, M.M. Mapping tribo-corrosion processes in dry and in aqueous conditions: Some new directions for the new millennium. Tribol. Int. 2022, 35, 681–689. [Google Scholar] [CrossRef]
- Mindivan, F.; Yildirim, M.P.; Bayindir, F.; Mindivan, H. Corrosion and Tribocorrosion Behavior of Cast and Machine Milled Co-Cr Alloys for Biomedical Applications. Acta Phys. Pol. A 2016, 129, 701–704. [Google Scholar] [CrossRef]
- Stachowiak, A.; Tyczewski, P.; Zwierzycki, W. The application of wear maps for analyzing the results of research into tribocorrosion. Wear 2016, 352–353, 146–154. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.; Barber, G.; Thrush, S.; Li, X. Wear Resistance of Medium Carbon Steel with Different Microstructures. Materials 2021, 14, 2015. [Google Scholar] [CrossRef] [PubMed]
- Trembach, B.; Grin, A.; Turchanin, M.; Makarenko, N.; Markov, O.; Trembach, I. Application of Taguchi method and ANOVA analysis for optimization of process parameters and exothermic addition (CuO-Al) introduction in the core filler during self-shielded flux-cored arc welding. Int. J. Adv. Manuf. Technol. 2021, 114, 1099–1118. [Google Scholar] [CrossRef]
- Dutta Majumdar, J.; Ramesh Chandra, B.; Manna, I. Laser composite surfacing of AISI 304 stainless steel with titanium boride for improved wear resistance. Tribol. Int. 2007, 40, 146–152. [Google Scholar] [CrossRef]
- Devaraju, A. A critical review on different types of wear of materials. Int. J. Mech. Eng. Technol. 2015, 6, 77–83. [Google Scholar]
- Barzegari, G.; Uromeihy, A.; Zhao, J. Parametric study of soil abrasivity for predicting wear issue in TBM tunneling projects. Tunn. Undergr. Space Technol. 2015, 48, 43–57. [Google Scholar] [CrossRef]
- Mosleh, M.; Gharahbagh, E.A.; Rostami, J. Effects of relative hardness and moisture on tool wear in soil excavation operations. Wear 2013, 1, 1555–1559. [Google Scholar] [CrossRef]
- Napiórkowski, J. Analiza właściwości glebowej masy ściernej w aspekcie oddziaływania zużyciowego. Tribologia 2010, 5, 53–62. [Google Scholar]
- Napiórkowski, J. Zużyciowe oddziaływanie gleby na elementy robocze narzędzi rolniczych. Inżynieria Rol. 2005, 9, 3–171. [Google Scholar]
- Natsis, A.; Petropoulos, G.; Pandazaras, C. Influence of local soil conditions on mouldboard ploughshare abrasive wear. Tribol. Int. 2008, 41, 151–157. [Google Scholar] [CrossRef]
- Yu, H.-J.; Bhole, S.D. Development of a prototype abrasive wear tester for tillage tool materials. Tribol. Int. 1990, 23, 309–316. [Google Scholar] [CrossRef]
- Capanidis, D. The influence of hardness of polyurethane on its abrasive wear resistance. Tribologia 2016, 4, 29–40. [Google Scholar] [CrossRef]
- Yazici, A. Investigation of the reduction of mouldboard ploughshare wear through hot stamping and hardfacing processes. Turk. J. Agric. For. 2011, 35, 461–468. [Google Scholar]
- Venturato, G.; Novella, M.; Bruschi, S.; Ghiotti, A.; Shivpuri, R. Effects of phase transformation in hot stamping of 22MnB5 high strength steel. Proceedia Eng. 2017, 183, 316–321. [Google Scholar] [CrossRef]
- Merklein, M.; Lechler, J. Investigation of the thermo-mechanical properties of hot stamping steels. J. Mater. Processing Technol. 2006, 177, 452–455. [Google Scholar] [CrossRef]
- Gracia-Escosa, E.; Garcia, I.; de Damborenea, J.J.; Conde, A. Friction and wear behaviour of tool steels sliding against 22MnB5 steel. J. Mater. Res. Technol. 2017, 6, 241–250. [Google Scholar] [CrossRef]
- Cho, L.; Golem, L.; Jung Seo, E.; Bhattacharya, D.; Speer, J.G.; Findley, K.O. Microstructural characteristics and mechanical properties of the AleSi coating on press hardened 22MnB5 steel. J. Alloy. Compd. 2020, 846, 156349. [Google Scholar] [CrossRef]
- Dosdat, L.; Petitjean, J.; Vietoris, T.; Clauzeau, O. Corrosion Resistance of Different Metallic Coatings on Press-Hardened Steels for Automotive. Steel Res. Int. 2011, 82, 726–733. [Google Scholar] [CrossRef]
- Allely, C.; Dosdat, L.; Clauzeau, O.; Ogle, K.; Volovitch, P. Anticorrosion mechanisms of aluminized steel for hot stamping. Surf. Coat. Technol. 2014, 238, 188–196. [Google Scholar] [CrossRef]
- Park, A.; Kim, J.G.; He, Y.S.; Shin, K.S.; Yoon, J.B. Comparative Study on the Corrosion Behavior of the Cold Rolled and Hot Rolled LowAlloy Steels Containing Copper and Antimony in Flue Gas Desulfurization Environment. Phys. Met. Metallogr. 2014, 115, 1285–1294. [Google Scholar] [CrossRef]
- Romek, D.; Selech, J.; Ulbrich, D.; Felusiak, A.; Kieruj, P.; Janeba-Bartosiewicz, E.; Pieniak, D. The impact of padding weld shape of agricultural machinery tools on their abrasive wear. Tribologia 2020, 290, 55–62. [Google Scholar] [CrossRef]
- Hrabe, P.; Muller, M. Research of overlays influence on ploughshare lifetime. Res. Agric. Eng. 2013, 59, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Konstencki, P.; Stawicki, T.; Królicka, A.; Sedłak, P. Wear of cultivator coulters reinforced with cemented-carbideplates and hardfacing. Wear 2019, 438, 203063. [Google Scholar] [CrossRef]
- Paczkowska, M.; Selech, J.; Piasecki, A. Effect of surface treatment on abrasive wear resistance of seeder coulerflap. Surf. Rev. Lett. 2016, 23, 1650007. [Google Scholar] [CrossRef]
- Aramide, B.; Pityana, S.; Sadiku, R.; Jamiru, T.; Popoola, P. Improving the durability of tillage tools through surface modification—A review. Int. J. Adv. Manuf. Technol. 2021, 116, 83–98. [Google Scholar] [CrossRef]
- Dilay, J.; Guney, B.; Ozkan, A.; Oz, A. Microstructure and wear properties of WC-10Co-4Cr coating to cultivator blades by DJ-HVOF. Emerg. Mater. Res. 2021, 10, 278–288. [Google Scholar] [CrossRef]
- Kostencki, P.; Stawicki, T.; Białobrzeska, B. Durability and wear geometry of subsoiler shanks provided with sintered carbide plates. Tribol. Int. 2016, 104, 19–35. [Google Scholar] [CrossRef]
- Foley, A.G.; Chisholm, C.J.; Mclees, V.A. Wear of ceramic-protected agricultural subsoilers. Tribol. Int. 1988, 21, 97–103. [Google Scholar] [CrossRef]
- Steinhoff, K.; Weidig, U.; Scholtes, B.; Zinn, W. Innovative flexible metal forming processes based on hybrid thermo-mechanical interaction. Steel Res. Int. 2005, 76, 154–159. [Google Scholar] [CrossRef]
- Karbasian, H.; Tekkaya, A.E. A review on hot stamping. J. Mater. Process. Technol. 2010, 210, 2103–2118. [Google Scholar] [CrossRef]
- Behrens, B.A.; Brunotte, K.; Weste, H.; Kock, C. Experimental investigations on the interactions between the process parameters of hot forming and the resulting residual stresses in the component. Procedia Manuf. 2020, 50, 706–712. [Google Scholar] [CrossRef]
- Yusoff, A.R.; Lim, S.K.; Ramadan, M. Microstructure and Mechanical Properties of Boron Sheet Metal Steels in Hot Press Forming Process With Nanofluid as a Coolant. Encycl. Smart Mater. 2022, 3, 266–280. [Google Scholar]
- Rong, H.; Hu, P.; Ying, L.; Hou, W.; Dai, M. Modeling the anisotropic plasticity and damage of AA7075 alloy in hot forming. Int. J. Mech. Sci. 2022, 215, 106951. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, R.; Qin, Z.; Chen, M. Shape controlling and property optimization of TA32 titanium alloy thin-walled part prepared by hot forming. Trans. Nonferrous Met. Soc. China 2021, 31, 2336–2357. [Google Scholar] [CrossRef]
- Bong, H.J.; Yoo, D.H.; Kim, D.; Kwon, Y.N.; Lee, J. Correlative Study on Plastic Response and Formability of Ti-6Al-4V Sheets under Hot Forming Conditions. J. Manuf. Processes 2020, 58, 775–786. [Google Scholar] [CrossRef]
- Stachowiak, A.; Zwierzycki, W. Analysis of the tribocorrosion mechanisms in a pin-on-plate combination on the example of AISI304 steel. Wear 2012, 294–295, 277–285. [Google Scholar] [CrossRef]
- Ghanbarzadeh, A.; Salehi, F.M.; Bryant, M.; Neville, A. A New Asperity-Scale Mechanistic Model of Tribocorrosive Wear: Synergistic Effects of Mechanical Wear and Corrosion. J. Tribol. 2019, 141, 021601. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, S.; Hardell, J.; Winkelmann, H.; Rodriguez Ripoll, M.; Prakash, B. Influence of temperature on abrasive wear of boron steel and hot forming tool steels. Wear 2015, 338–339, 27–35. [Google Scholar] [CrossRef]
- Singh, T.P.; Singla, A.K.; Singh, J.; Singh, K.; Gupta, M.K.; Ji, H.; Song, Q.; Liu, Z.; Pruncu, C.I. Abrasive Wear Behavior of Cryogenically Treated Boron Steel (30MnCrB4) Used for Rotavator Blades. Materials 2020, 13, 436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Properties | 22MnCrB5 |
---|---|
Hardness | 165–235 HV, after hot-forming, 400–520 HV |
Tensile strength (MPa) | 400–570, after hot-forming, 1300–1650 |
Yield strength (MPa) | 200 |
Elongation A80 (%) | 15 |
Material | C | Si | P | S | Mn | Al | Cr | Ti | B |
---|---|---|---|---|---|---|---|---|---|
22MnCrB5 | 0.19–0.25 | 0.4 | 0.025 | 0.015 | 1.10–1.40 | 0.02–0.06 | 0.15–0.25 | 0.02–0.05 | 0.0008–0.005 |
22MnCrB5—Cold-Formed State | 22MnCrB5 after Hot-Forming | |
---|---|---|
Ecorr (mV) (SCE) | −710 ± 20 | −620 ± 20 |
icorr (µA/cm2) | 13 ± 1 | 2.3 ± 0.3 |
Material | Material Loss in the Tribocorrosion (ZT) | Mechanical Wear (ZM) | (ΔZ = ZT − ZM) | ΔZ/ZT |
---|---|---|---|---|
(µm) | (µm) | (µm) | (%) | |
22MnCrB5 in cold-formed state | 12.1 ± 0.2 | 7.9 ± 0.2 | 4.20 | 35 |
22MnCrB5 after hot-forming | 7.0 ± 0.2 | 5.0 ± 0.2 | 2.02 | 28 |
Material | Material Loss in the Tribocorrosion (ZT) | Mechanical Wear (ZM) |
---|---|---|
(mm3) | (mm3) | |
22MnCrB5 in cold-formed state | 0.028 ± 0.001 | 0.015 ± 0.001 |
22MnCrB5 after hot-forming | 0.013 ± 0.001 | 0.008 ± 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulbrich, D.; Stachowiak, A.; Kowalczyk, J.; Wieczorek, D.; Matysiak, W. Tribocorrosion and Abrasive Wear Test of 22MnCrB5 Hot-Formed Steel. Materials 2022, 15, 3892. https://doi.org/10.3390/ma15113892
Ulbrich D, Stachowiak A, Kowalczyk J, Wieczorek D, Matysiak W. Tribocorrosion and Abrasive Wear Test of 22MnCrB5 Hot-Formed Steel. Materials. 2022; 15(11):3892. https://doi.org/10.3390/ma15113892
Chicago/Turabian StyleUlbrich, Dariusz, Arkadiusz Stachowiak, Jakub Kowalczyk, Daniel Wieczorek, and Waldemar Matysiak. 2022. "Tribocorrosion and Abrasive Wear Test of 22MnCrB5 Hot-Formed Steel" Materials 15, no. 11: 3892. https://doi.org/10.3390/ma15113892
APA StyleUlbrich, D., Stachowiak, A., Kowalczyk, J., Wieczorek, D., & Matysiak, W. (2022). Tribocorrosion and Abrasive Wear Test of 22MnCrB5 Hot-Formed Steel. Materials, 15(11), 3892. https://doi.org/10.3390/ma15113892