Mesitylene Tribenzoic Acid as a Linker for Novel Zn/Cd Metal-Organic Frameworks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. Synthesis of H3MTB
2.1.2. Synthesis of {[Zn2LHCO2(DMF)2H2O]·DMF}n (1)
2.1.3. Synthesis of {[CdL(DMF)] C2H8N·H2O}n (2)
2.1.4. Synthesis of {[CdHL(DMF)] DMF}n (3)
2.1.5. Activation of 1 and 3
2.2. X-ray Crystallography
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef]
- Piscopo, C.G.; Loebbecke, S. Strategies to Enhance Carbon Dioxide Capture in Metal-Organic Frameworks. ChemPlusChem 2020, 85, 538–547. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Lin, R.B.; Zhou, W.; Zhang, Z.; Xiang, S.; Chen, B. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem 2019, 1, 100006. [Google Scholar] [CrossRef]
- Kumar, K.V.; Preuss, K.; Titirici, M.M.; Rodríguez-Reinoso, F. Nanoporous Materials for the Onboard Storage of Natural Gas. Chem. Rev. 2017, 117, 1796–1825. [Google Scholar] [CrossRef]
- Lackner, K.S. A Guide to CO2 Sequestration. Science 2003, 300, 1677–1678. [Google Scholar] [CrossRef]
- Lackner, K.S. Capture of carbon dioxide from ambient air. Eur. Phys. J. Spec. Top. 2009, 176, 93–106. [Google Scholar] [CrossRef]
- Yaghi, O.M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117, 10401–10402. [Google Scholar] [CrossRef]
- Yaghi, O.M.; Li, G.; Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature 1995, 378, 703–706. [Google Scholar] [CrossRef]
- López, Y.C.; Viltres, H.; Gupta, N.K.; Acevedo-Peña, P.; Leyva, C.; Ghaffari, Y.; Gupta, A.; Kim, S.; Bae, J.; Kim, K.S. Transition metal-based metal–organic frameworks for environmental applications: A review. Environ. Chem. Lett. 2021, 19, 1295–1334. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, W.; Kang, X.; Cao, Z.; Chen, X.; Liu, Y.; Cui, Y. Topology-Based Functionalization of Robust Chiral Zr-Based Metal–Organic Frameworks for Catalytic Enantioselective Hydrogenation. J. Am. Chem. Soc. 2020, 142, 9642–9652. [Google Scholar] [CrossRef]
- Gong, W.; Chen, X.; Jiang, H.; Chu, D.; Cui, Y.; Liu, Y. Highly Stable Zr(IV)-Based Metal–Organic Frameworks with Chiral Phosphoric Acids for Catalytic Asymmetric Tandem Reactions. J. Am. Chem. Soc. 2019, 141, 7498–7508. [Google Scholar] [CrossRef]
- Nikolayenko, V.I.; Herbert, S.A.; Barbour, L.J. Reversible structural switching of a metal–organic framework by photoirradiation. Chem. Commun. 2017, 53, 11142–11145. [Google Scholar] [CrossRef]
- Müller, K.; Helfferich, J.; Zhao, F.; Verma, R.; Kanj, A.B.; Meded, V.; Bléger, D.; Wenzel, W.; Heinke, L. Switching the Proton Conduction in Nanoporous, Crystalline Materials by Light. Adv. Mater. 2018, 30, 1706551. [Google Scholar] [CrossRef]
- Wang, H.; Cui, P.H.; Shi, J.X.; Tan, J.Y.; Zhang, J.Y.; Zhang, N.; Zhang, C. Controllable self-assembly of CdS@NH2-MIL-125(Ti) heterostructure with enhanced photodegradation efficiency for organic pollutants through synergistic effect. Mat. Sci. Semicon. Proc. 2019, 97, 91–100. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, G.; Liu, K.; Deng, S.; Wang, B.; Huang, J.; Wang, Y. Integrated adsorption and visible-light photodegradation of aqueous clofibric acid and carbamazepine by a Fe-based metal-organic framework. Chem. Eng. J. 2017, 330, 157–165. [Google Scholar] [CrossRef]
- Ziebel, M.E.; Gaggioli, C.A.; Turkiewicz, A.B.; Ryu, W.; Gagliardi, L.; Long, J.R. Effects of Covalency on Anionic Redox Chemistry in Semiquinoid-Based Metal–Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 2653–2664. [Google Scholar] [CrossRef]
- Gu, G.; Bai, Z.; Majumder, S.; Huang, B.; Chen, G. Conductive metal–organic framework with redox metal center as cathode for high rate performance lithium ion battery. J. Power Sources 2019, 429, 22–29. [Google Scholar] [CrossRef]
- Ma, B.; Guo, H.; Wang, M.; Li, L.; Jia, X.; Chen, H.; Xue, R.; Yang, W. Electrocatalysis of Cu− MOF/graphene composite and its sensing application for electrochemical simultaneous determination of dopamine and paracetamol. Elecroanalysis 2019, 31, 1002–1008. [Google Scholar] [CrossRef]
- Tian, H.; Fan, H.; Li, M.; Ma, L. Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor. ACS Sens. 2016, 1, 243–250. [Google Scholar] [CrossRef]
- Sun, Q.; Bi, H.; Wang, Z.; Li, C.; Wang, C.; Xu, J.; Yang, D.; He, F.; Gai, S.; Yang, P. O2-Generating Metal–Organic Framework-Based Hydrophobic Photosensitizer Delivery System for Enhanced Photodynamic Therapy. ACS Appl. Mater. Interfaces 2019, 11, 36347–36358. [Google Scholar] [CrossRef]
- Yang, X.; Tang, Q.; Jiang, Y.; Zhang, M.; Wang, M.; Mao, L. Nanoscale ATP-Responsive Zeolitic Imidazole Framework-90 as a General Platform for Cytosolic Protein Delivery and Genome Editing. J. Am. Chem. Soc. 2019, 141, 3782–3786. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Yang, Z.; Bai, J.; Li, Y.; Li, S. High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal–organic frameworks. Chem. Commun. 2012, 48, 7025–7027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghalei, B.; Wakimoto, K.; Wu, C.Y.; Isfahani, A.P.; Yamamoto, T.; Sakurai, K.; Higuchi, M.; Chang, B.K.; Kitagawa, S.; Sivaniah, E. Rational Tuning of Zirconium Metal–Organic Framework Membranes for Hydrogen Purification. Angew. Chem. Int. Edit. 2019, 58, 19034–19040. [Google Scholar] [CrossRef] [PubMed]
- Bahrin, L.G.; Bejan, D.; Shova, S.; Gdaniec, M.; Fronc, M.; Lozan, V.; Janiak, C. Alkali- and alkaline-earth metal–organic networks based on a tetra(4-carboxyphenyl)bimesitylene-linker. Polyhedron 2019, 173, 114128. [Google Scholar] [CrossRef]
- Bejan, D.; Bahrin, L.G.; Shova, S.; Marangoci, N.L.; Kökçam-Demir, U.; Lozan, V.; Janiak, C. New Microporous Lanthanide Organic Frameworks. Synthesis, Structure, Luminescence, Sorption, and Catalytic Acylation of 2-Naphthol. Molecules 2020, 25, 3055. [Google Scholar] [CrossRef]
- Ursu, E.L.; Rosca, I.; Bahrun, L.G.; Clima, L.; Bejan, D.; Sardaru, M.C.; Marangoci, N.; Lozan, V.; Rotaru, A. Aqueous Dispersion of Single-Walled Carbon Nanotubes Using Tetra-Phenyl Bimesitylene Derivative via Noncovalent Modification and Improved Antimicrobial Activity. J. Nanosci. Nanotechnol. 2019, 19, 7960–7966. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Rosca, I.; Clima, L.; Shova, S.; Bejan, D.; Nicolescu, A.; Marangoci, N.L.; Sardaru, M.C.; Lozan, V.; Rotaru, A. Zinc(II) coordination polymer on the base of 3′-(1H-tetrazol-5-yl)-[1,1′-biphenyl]-4-carboxylic acid: Synthesis, crystal structure and antimicrobial properties. Inorg. Chem. Commun. 2018, 92, 60–63. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Clima, L.; Shova, S.; Rosca, I.; Cojocaru, C.; Bejan, D.; Sardaru, M.C.; Marangoci, N.; Lozan, V.; Rotaru, A. Synthesis, structure, computational modeling, and biological activity of two novel bimesitylene derivatives. Res. Chem. Intermediat. 2019, 45, 453–469. [Google Scholar] [CrossRef]
- Bejan, D.; Bahrin, L.G.; Cojocaru, C.; Trandabat, A.F.; Marangoci, N.L.; Rotaru, A.; Shova, S. The use of C1 symmetry imidazole-carboxylate building block and auxiliary acetate co-ligand for assembly of a 2D wave-like zinc(II) coordination polymer: Experimental and theoretical study. J. Coord. Chem. 2020, 73, 2250–2264. [Google Scholar] [CrossRef]
- Sardaru, M.C.; Marangoci, N.L.; Shova, S.; Bejan, D. Novel Lanthanide (III) Complexes Derived from an Imidazole–Biphenyl–Carboxylate Ligand: Synthesis, Structure and Luminescence Properties. Molecules 2021, 26, 6942. [Google Scholar] [CrossRef]
- Bejan, D.; Bahrin, L.G.; Shova, S.; Sardaru, M.; Clima, L.; Nicolescu, A.; Marangoci, N.; Lozan, V.; Janiak, C. Spontaneous resolution of non-centrosymmetric coordination polymers of zinc(II) with achiral imidazole-biphenyl-carboxylate ligands. Inorg. Chim. Acta 2018, 482, 275–283. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Nicolescu, A.; Shova, S.; Marangoci, N.L.; Birsa, M.L.; Sarbu, L.G. Nitrogen-Based Linkers with a Mesitylene Core: Synthesis and Characterization. Molecules 2021, 26, 5952. [Google Scholar] [CrossRef] [PubMed]
- Ardeleanu, R.; Dascalu, A.; Shova, S.; Nicolescu, A.; Rosca, I.; Bratanovici, B.I.; Lozan, V.; Roman, G. 4′-(2H-tetrazol-5-yl)-[1,1′-biphenyl]-4-carboxylic acid: Synthetic approaches, single crystal X-ray structures and antimicrobial activity of intermediates. J. Mol. Struct. 2018, 1173, 63–71. [Google Scholar] [CrossRef]
- Dascalu, I.A.; Mikhalyova, E.A.; Shova, S.; Bratanovici, B.I.; Ardeleanu, R.; Marangoci, N.; Lozan, V.; Roman, G. Synthesis, crystal structure and luminescent properties of isoreticular lanthanide–organic frameworks based on a tetramethyl-substituted terphenyldicarboxylic acid. Polyhedron 2021, 194, 114929. [Google Scholar] [CrossRef]
- Bratanovici, B.I.; Nicolescu, A.; Shova, S.; Dascalu, I.A.; Ardeleanu, R.; Lozan, V.; Roman, G. Design and synthesis of novel ditopic ligands with a pyrazole ring in the central unit. Res. Chem. Intermediat. 2020, 46, 1587–1611. [Google Scholar] [CrossRef]
- Dascalu, I.A.; Shova, S.; Dumitrescu, D.G.; Roman, G.; Bratanovici, B.I.; Ardeleanu, R.; Lozan, V. Coordination polymers of Cu(II), Co(II) and Cd(II) based on a tetramethyl-substituted terphenyldicarboxylic acid. Polyhedron 2019, 170, 463–470. [Google Scholar] [CrossRef]
- Ohshiro, N.; Takei, F.; Onitsuka, K.; Takahashi, T. Synthesis of organometallic dendrimers with a backbone composed of platinum-acetylide units. J. Organomet. Chem. 1998, 569, 195–202. [Google Scholar] [CrossRef]
- CrysAlisPro, version 1.171.41.64; Rigaku Oxford Diffraction: Oxford, UK, 2015.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Zhao, X.; He, H.; Dai, F.; Sun, D.; Ke, Y. Supramolecular Isomerism in Honeycomb Metal-Organic Frameworks Driven by CH 333 π Interactions: Homochiral Crystallization from an Achiral Ligand through Chiral Inducement. Inorg. Chem. 2010, 49, 8650–8652. [Google Scholar] [CrossRef]
- Zhao, X.; Dou, J.; Sun, D.; Cui, P.; Sun, D.; Wu, Q. A porous metal–organic framework (MOF) with unusual 2D→3D polycatenation based on honeycomb layers. Dalton Trans. 2012, 41, 1928–1930. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, F.; Zhang, L.; Sun, D.; Wang, R.; Ju, Z.; Yuan, D.; Sun, D. Achieving a Rare Breathing Behavior in a Polycatenated 2D to 3 D Net through a Pillar-Ligand Extension Strategy. Chem. Eur. J. 2014, 20, 649–652. [Google Scholar] [CrossRef]
- Liu, T.F.; Vermeulen, N.A.; Howarth, A.J.; Li, P.; Sarjeant, A.A.; Hupp, J.T.; Farha, O.K. Adding to the Arsenal of Zirconium-Based Metal–Organic Frameworks: The Topology as a Platform for Solvent-Assisted Metal Incorporation. Eur. J. Inorg. Chem. 2016, 2016, 4349–4352. [Google Scholar] [CrossRef]
- Wang, B.; Lv, X.L.; Feng, D.; Xie, L.J.; Zhang, J.; Li, M.; Xie, Y.; Li, J.R.; Zhou, H.C. Highly Stable Zr(IV)-Based Metal–Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water. J. Am. Chem. Soc. 2016, 138, 6204–6216. [Google Scholar] [CrossRef]
- Bumstead, A.M.; Cordes, D.B.; Dawson, D.M.; Chakarova, K.K.; Mihaylov, M.Y.; Hobday, C.L.; Düren, T.; Hadjiivanov, K.I.; Slawin, A.M.Z.; Ashbrook, S.E.; et al. Modulator-Controlled Synthesis of Microporous STA-26, an Interpenetrated 8,3-Connected Zirconium MOF with the the-i Topology, and its Reversible Lattice Shift. Chem. Eur. J. 2018, 24, 6115–6126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Y.C.; Yuan, S.; Li, X.X.; Du, D.Y.; Wang, C.; Qin, J.S.; Drake, H.F.; Lan, Y.Q.; Jiang, L.; Zhou, H.C. Face-Sharing Archimedean Solids Stacking for the Construction of Mixed-Ligand Metal–Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 13841–13848. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, X.; Li, P.; Otake, K.; Cui, Y.; Lyu, J.; Krzyaniak, M.D.; Zhang, Y.; Li, Z.; Liu, J.; et al. Vanadium Catalyst on Isostructural Transition Metal, Lanthanide, and Actinide Based Metal–Organic Frameworks for Alcohol Oxidation. J. Am. Chem. Soc. 2019, 141, 8306–8314. [Google Scholar] [CrossRef]
- Robison, L.; Gong, X.; Evans, A.M.; Son, F.A.; Wang, X.; Redfern, L.R.; Wasson, M.C.; Syed, Z.H.; Chen, Z.; Idrees, K.B.; et al. Transient Catenation in a Zirconium-Based Metal–Organic Framework and Its Effect on Mechanical Stability and Sorption Properties. J. Am. Chem. Soc. 2021, 143, 1503–1512. [Google Scholar] [CrossRef]
- Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O’Keeffe, M.; Yaghi, O.M. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300, 1127–1129. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Liu, Y.; Li, Y.; Jiang, M.; Li, X.; Shi, Y.; Wang, J. A cadmium(II)-based metal–organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. J. Mater. Chem. A 2016, 4, 16349–16355. [Google Scholar] [CrossRef]
- Glomb, S.; Woschko, D.; Makhloufi, G.; Janiak, C. Metal–Organic Frameworks with Internal Urea-Functionalized Dicarboxylate Linkers for SO2 and NH3 Adsorption. ACS Appl. Mater. Interfaces 2017, 9, 37419–37434. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | |
---|---|---|---|
Empirical formula | C40H45N3O12Zn2 | C35H38CdN2O8 | C36H36CdN2O8 |
Fw | 890.53 | 727.07 | 737.07 |
Space group | P21/c | Fdd2 | C2/c |
a [Å] | 10.2207(5) | 9.0032(5) | 34.769(3) |
b [Å] | 28.3147(14) | 60.946(2) | 7.5285(4) |
c [Å] | 14.9056(9) | 31.1632(10) | 33.254(3) |
α [°] | 90 | 90 | 90 |
β [°] | 98.678(5) | 90 | 114.833(11) |
γ [°] | 90 | 90 | 90 |
V [Å3] | 4264.2(4) | 17,099.6(12) | 7899.7(13) |
Z | 4 | 16 | 8 |
rcalcd [g cm−3] | 1.387 | 1.130 | 1.239 |
Crystal size [mm] | 0.25 × 0.08 × 0.08 | 0.15× 0.05 × 0.05 | 0.25 × 0.02 × 0.02 |
T [K] | 200 | 180 | 180 |
μ [mm−1] | 1.187 | 0.553 | 0.599 |
2Θ range [°] | 3.99 to 50.052 | 2.936 to 50.052 | 4.45 to 50.054 |
Reflections collected | 15,409 | 27,241 | 16777 |
Independent reflections | 7479[Rint = 0.0368] | 7488[Rint = 0.0921] | 6878[Rint = 0.0905] |
Data/restraints/parameters | 7479/82/522 | 7488/7/423 | 6878/2/396 |
R1[a] | 0.0890 | 0.0519 | 0.0751 |
wR2[b] | 0.2050 | 0.0641 | 0.1795 |
GOF[c] | 1.071 | 0.999 | 1.009 |
CCDC | 2,171,839 | 2,171,840 | 2,171,841 |
SBET (m2/g) | Micropore Volume a (cm3/g) | Mesopore Volume b (cm3/g) | Total Pore Volume (cm3/g) |
---|---|---|---|
906 | 0.347 | 0.021 | 0.384 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bejan, D.; Dascalu, I.-A.; Shova, S.; Trandabat, A.F.; Bahrin, L.G. Mesitylene Tribenzoic Acid as a Linker for Novel Zn/Cd Metal-Organic Frameworks. Materials 2022, 15, 4247. https://doi.org/10.3390/ma15124247
Bejan D, Dascalu I-A, Shova S, Trandabat AF, Bahrin LG. Mesitylene Tribenzoic Acid as a Linker for Novel Zn/Cd Metal-Organic Frameworks. Materials. 2022; 15(12):4247. https://doi.org/10.3390/ma15124247
Chicago/Turabian StyleBejan, Dana, Ioan-Andrei Dascalu, Sergiu Shova, Alexandru F. Trandabat, and Lucian G. Bahrin. 2022. "Mesitylene Tribenzoic Acid as a Linker for Novel Zn/Cd Metal-Organic Frameworks" Materials 15, no. 12: 4247. https://doi.org/10.3390/ma15124247
APA StyleBejan, D., Dascalu, I.-A., Shova, S., Trandabat, A. F., & Bahrin, L. G. (2022). Mesitylene Tribenzoic Acid as a Linker for Novel Zn/Cd Metal-Organic Frameworks. Materials, 15(12), 4247. https://doi.org/10.3390/ma15124247