Lead-Free BiFeO3-Based Piezoelectrics: A Review of Controversial Issues and Current Research State
Abstract
:1. Introduction
2. Lead-Free Piezoelectrics
3. (BiFeO3–BaTiO3)-Based Lead-Free Piezoelectrics
3.1. Crystal and Domain Structures
3.2. Ferroelectric Domain Structure
3.3. Piezoelectric Properties
3.4. Issues in BF–BT-Based System
3.4.1. High Conductivity
3.4.2. Chemical/Compositional Inhomogeneity
3.4.3. Heat-Treatment
3.4.4. Pseudo-Cubic Structure
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guaita, J.M.; Bouich, A.; Mari, B. Shedding Lignt on Phase Stability and Surface Engineering of Formamidinium Lead Iodide (FaPbI3) Thin Films for solar Cells. Eng. Proc. 2021, 12, 1. [Google Scholar]
- Bouich, A.; Guaita, J.M.; Bouich, A.; Pradas, G.I.; Mari, B. Towards Manufacture Stable Lead Perovskite APbI3 (A=Cs, MA, FA) Based Solar Cells with Low-Cost Techniques. Eng. Proc. 2021, 12, 81. [Google Scholar]
- Prescient & Strategic Intelligence. Electroceramics Market by Type (Dielectric Ceramics, Conductive Ceramics, Piezoelectric Ceramics, Magnetic Ceramics), by Material (Titanate, Zirconate, Alumina), by Application (Capacitors, Data Storage Devices, Optoelectronic Devices, Actuators & Sensors, Power Distribution Devices), by Geography (U.S., Canada, Germany, U.K., France, Italy, Spain, Netherlands, China, Japan, South Korea, India, Taiwan, Australia, Brazil, Mexico, Argentina, Saudi Arabia, South Africa, Israel, U.A.E.)—Global Market Size, Share, Development, Growth, and Demand Forecast, 2013–2023. Available online: https://www.psmarketresearch.com/ (accessed on 1 January 2019).
- Jeong, C.K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G.T.; Park, D.Y.; Park, J.H.; Lee, S.S.; Byun, M.; Ko, S.H.; et al. A Hyper-Stretchable Elastic-Composite Energy Harvester. Adv. Mater. 2015, 27, 2866–2875. [Google Scholar] [CrossRef] [PubMed]
- Manbachi, A.; Cobbold, R.S.C. Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound 2011, 19, 187–196. [Google Scholar] [CrossRef]
- Uchino, K. Glory of piezoelectric perovskites. Sci. Technol. Adv. Mater. 2015, 16, 0460013. [Google Scholar] [CrossRef]
- Furukawa, T.; Ishida, K.; Fukada, E. Piezoelectric properties in the composite systems of polymers and PZT ceramics. J. Appl. Phys. 1979, 50, 4904–4912. [Google Scholar] [CrossRef]
- Miao, H.; Chen, X.; Cai, H.; Li, F. Comparative face-shear piezoelectric properties of soft and hard PZT ceramics. J. Appl. Phys. 2015, 118, 214102. [Google Scholar] [CrossRef]
- Kumar, B.P.; Sangawar, S.R.; Kumar, H.H. Structural and electrical properties of double doped (Fe3+ and Ba2+) PZT electroceramics. Ceram. Int. 2014, 40, 3809–3812. [Google Scholar] [CrossRef]
- EU Council. Directive 2002/95/EC of the European parliament and of the council on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Off. J. Eur. Union. 2003, 37, 19–23. [Google Scholar]
- Trusted Publisher—Independent Citation Database—Web of Science Group. Available online: https://clarivate.com/products/web-of-science (accessed on 24 March 2022).
- Kim, S.; Choi, H.; Han, S.; Park, J.S.; Lee, M.H.; Song, T.K.; Kim, M.H.; Do, D.; Kim, W.J. A correlation between piezoelectric response and crystallographic structural parameter observed in lead-free (1−x)(Bi0.5Na0.5)TiO3–xSrTiO3 piezoelectrics. J. Eur. Ceram. Soc. 2017, 37, 1379–1386. [Google Scholar] [CrossRef]
- Zhou, X.; Qi, H.; Yan, Z.; Xue, G.; Luo, H.; Zhang, D. Superior Thermal Stability of High Energy Density and Power Density in Domain-Engineered Bi0.5Na0.5TiO3-NaTaO3 Relaxor Ferroelectrics. ACS Appl. Mater. Interfaces 2019, 11, 43107–43115. [Google Scholar] [CrossRef]
- Kim, M.; Sapkota, P.; Khanal, G.P.; Kim, S.; Fujii, I.; Ueno, S.; Takei, T.; Suzuki, T.S.; Uchikoshi, T.; Wada, S. Effect of ball-milling time and surfactant content for fabrication of 0.85(Bi0.5Na0.5)TiO3:0.15BaTiO3 green ceramics by electrophoretic deposition. J. Ceram. Soc. Jpn. 2018, 126, 542–546. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, F.; Yang, Q.; Liu, Z.; Li, Y.; Liu, Y.; Zhang, Q. Large piezoelectric properties in KNN-based lead-free single crystals grown by a seed-free solid-state crystal growth method. Appl. Phys. Lett. 2016, 108, 182904. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, T.; Kozuka, H.; Kitamura, K.; Yamada, H.; Kurahashi, T.; Yamazaki, M.; Ohbayashi, K. KNN-NTK composite lead-free piezoelectric ceramics. J. Appl. Phys. 2014, 116, 154104. [Google Scholar] [CrossRef]
- Yin, J.; Li, C.; Wu, B.; Li, Z.; Wu, J. Defect-induced superior piezoelectric response in perovskite KNbO3. J. Eur. Ceram. Soc. 2021, 41, 2506–2513. [Google Scholar] [CrossRef]
- Mallik, H.S.; Fujii, I.; Matsui, Y.; Khanal, G.P.; Kim, S.; Ueno, S.; Suzuki, T.S.; Wada, S. Preparation and investigation of hexagonal-tetragonal BaTiO3 powders. J. Ceram. Soc. Jpn. 2021, 129, 91–96. [Google Scholar] [CrossRef]
- Sapkota, P.; Fujii, I.; Kim, S.; Ueno, S.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. Mn-Nb co-doping in barium titanate ceramics by different solid-state reaction routes for temperature stable and DC-bias free dielectrics. Ceram. Int. 2022, 48, 2154–2160. [Google Scholar] [CrossRef]
- Guo, R.; Luo, H.; Yan, M.; Zhou, X.; Zhou, K.; Zhang, D. Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires. Nano Energy 2021, 79, 2211–2855. [Google Scholar] [CrossRef]
- Kang, F.; Zhang, L.; Huang, B.; Mao, P.; Wang, Z.; Sun, Q.; Wang, J.; Hu, D. Enhanced electromechanical properties of SrTiO3-BiFeO3-BaTiO3 ceramics via relaxor behavior and phase boundary design. J. Eur. Ceram. Soc. 2020, 40, 1198–1204. [Google Scholar] [CrossRef]
- Lee, M.H.; Park, J.S.; Kim, D.J.; Kambale, R.C.; Kim, M.H.; Song, T.K.; Jung, H.J.; Kim, S.W.; Choi, H.I.; Kim, W.J.; et al. Ferroelectric and Piezoelectric Properties of BiFeO3-BaTiO3 Solid Solution Ceramics. Ferroelectrics 2013, 452, 7–12. [Google Scholar] [CrossRef]
- Khanal, G.P.; Fujii, I.; Kim, S.; Ueno, S.; Wada, S. Fabrication of (Bi0.5K0.5)TiO3 modified BaTiO3-Bi(Mg0.5Ti0.5)O3-BiFeO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 2021, 41, 4108–4115. [Google Scholar] [CrossRef]
- Takenaka, T.; Maruyama, K.I.; Sakata, K. (Bi1/2Na1/2)TiO3-BaTiO3 System for Lead-Free Piezoelectric Ceramics. Jpn. J. Appl. Phys. 1991, 30, 2236. [Google Scholar] [CrossRef]
- Sasaki, A.; Chiba, T.; Mamiya, Y.; Otsuki, E. Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3 Systems. Jpn. J. Appl. Phys. 1999, 38, 5564. [Google Scholar] [CrossRef]
- Zhang, S.T.; Kounga, A.B.; Aulbach, E.; Ehrenberg, H.; Rodel, J. Giant Strain in Lead-free Piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 System. Appl. Phys. Lett. 2007, 91, 112906. [Google Scholar] [CrossRef]
- Zhang, S.T.; Kounga, A.B.; Aulbach, E.; Granzow, T.; Jo, W.; Kleebe, H.J.; Rodel, J. Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I. Structure and Room temperature properties. J. Appl. Phys. 2008, 103, 034107. [Google Scholar] [CrossRef] [Green Version]
- Jo, W.; Dittmer, R.; Acosta, M.; Zang, J.; Groh, C.; Sapper, E.; Wang, K.; Rodel, J. Giant electric-field-induced strains in lead-free ceramics for actuator applications—Status and perspective. J. Electroceram. 2012, 29, 71–93. [Google Scholar] [CrossRef]
- Rodel, J.; Jo, W.; Seifert, K.T.P.; Anton, E.M.; Granzow, T.; Damjanovic, D. Perspective on the Development of Lead-Free Piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1177. [Google Scholar] [CrossRef]
- Han, H.S.; Jo, W.; Kang, J.K.; Ahn, C.W.; Kim, I.W.; Ahn, K.K.; Lee, J.S. Incipient Piezoelectric and Electrostriction Behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 Lead-free Ceramics. J. Appl. Phys. 2013, 113, 154102. [Google Scholar] [CrossRef] [Green Version]
- Khanal, G.P.; Kim, S.; Kim, M.; Fujii, I.; Ueno, S.; Wada, S. Grain-size dependence of piezoelectric properties in thermally annealed BaTiO3 ceramics. J. Ceram. Soc. Jpn. 2018, 126, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Hoshina, T.; Hatta, S.; Takeda, H.; Tsurumi, T. Grain size effect on piezoelectric properties of BaTiO3 ceramics. Jpn. J. Appl. Phys. 2018, 57, 0902BB. [Google Scholar] [CrossRef] [Green Version]
- Huan, Y.; Wang, X.; Fang, J.; Li, L. Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J. Eur. Ceram. Soc. 2014, 34, 1445–1448. [Google Scholar] [CrossRef]
- Kinoshita, K.; Yamaji, A. Grain-size effects on dielectric properties in barium titanate ceramics. J. Appl. Phys. 1976, 47, 371–373. [Google Scholar] [CrossRef]
- Mangaiyarkkarasi, J.; Saravanan, R.; Ismail, M.M. Chemical bonding and charge density distribution analysis of undoped and lanthanum doped barium titanate ceramics. J. Chem. Sci. 2016, 128, 1913–1921. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Noda, S.; Abe, T.; Yokoi, Y.; Nakahira, Y.; Moriyoshi, C.; Kuroiwa, Y. Electric-field-induced structural changes for cubic system of lead-free and lead-based perovskite-type oxides. Jpn. J. Appl. Phys. 2020, 59, SPPA05. [Google Scholar] [CrossRef]
- Abe, T.; Kim, S.; Moriyoshi, C.; Kitanaka, Y.; Noguchi, Y.; Tanaka, H.; Kuroiwa, Y. Visualization of spontaneous electronic polarization in Pb ion of ferroelectric PbTiO3 by synchrotron-radiation X-ray diffraction. Appl. Phys. Lett. 2020, 117, 252905. [Google Scholar] [CrossRef]
- Aoyagi, S.; Kuroiwa, Y.; Sawada, A.; Yamashita, I.; Atake, T. Composite Structure of BaTiO3 Nanoparticle Investigated by SR X-ray Diffraction. J. Phys. Soc. Jpn. 2002, 71, 1218–1221. [Google Scholar] [CrossRef]
- Oshime, N.; Ohwada, K.; Sugawara, K.; Abe, T.; Yamauchi, R.; Ueno, T.; Machida, A.; Watanuki, T.; Ueno, S.; Fujii, I.; et al. Bragg coherent diffraction imaging allowing simultaneous retrieval of three-dimensional shape and strain distribution for 40–500 nm particles. Jpn. J. Appl. Phys. 2021, 60, SFFA07. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, G.; Song, K.; Jeong, C.K.; Park, K.; Jang, J.; Kim, K.; Ryu, J.; Choi, S. Inverse Size-dependence of piezoelectricity in single BaTiO3 nanoparticles. Nano Energy 2019, 58, 78–84. [Google Scholar] [CrossRef]
- Vriami, D.; Damjanovic, D.; Vleugels, J.; Biest, O.V. Textured BaTiO3 by templated grain growth and electrophoretic deposition. J. Mater. Sci. 2015, 50, 7896–7907. [Google Scholar] [CrossRef]
- Mallik, H.S.; Fujii, I.; Khanal, G.P.; Kim, S.; Ueno, S.; Suzuki, T.S.; Wada, S. Fabrication of <111>-oriented BaTiO3 ceramics by high magnetic field electrophoretic deposition using hexagonal-tetragonal coexisting BaTiO3 powder. J. Ceram. Soc. Jpn. 2020, 128, 469–474. [Google Scholar] [CrossRef]
- Liu, W.; Ren, X. Large Piezoelectric Effect in Pb-Free Ceramics. Phys. Rev. Lett. 2009, 103, 257602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Hu, X.; Wang, Y.; Liu, Y.; Zhang, L.; Ke, X.; Zhong, L.; Zhao, H.; Ren, X. Understanding the mechanism of large dielectric response in Pb-free (1−x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. Acta Mater. 2017, 125, 177–186. [Google Scholar] [CrossRef]
- Kim, S.W.; Choi, H.I.; Lee, M.H.; Park, J.S.; Do, D.; Kim, M.H.; Song, T.K.; Kim, W.J. Electrical properties and phase of BaTiO3-SrTiO3 solid solution. Ceram. Int. 2012, 39, S487–S490. [Google Scholar] [CrossRef]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef]
- Huan, Y.; Wei, T.; Wang, Z.; Lei, C.; Chen, F.; Wang, X. Polarization switching and rotation in KNN-based lead-free piezoelectric ceramics near the polymorphic phase boundary. J. Eur. Ceram. Soc. 2019, 39, 1002–1010. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, S.; Tan, X. Phase-composition dependent domain responses in (K0.5Na0.5)NbO3-based piezoceramics. J. Eur. Ceram. Soc. 2020, 40, 1217–1222. [Google Scholar] [CrossRef]
- Zuo, R.; Qi, H.; Fu, J. Strain effects of temperature and electric field induced phase instability in (Na,K)(Nb,Sb)O3-LiTaO3 lead-free ceramics. J. Eur. Ceram. Soc. 2017, 37, 2309–2313. [Google Scholar] [CrossRef]
- Wang, K.; Li, J.F. Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater. 2010, 20, 1924–1929. [Google Scholar] [CrossRef]
- Wang, K.; Yao, F.; Jo, W.; Gobeljic, D.; Shvartsman, V.V.; Lupascu, D.C.; Li, J.F.; Rodel, J. Temperature-Insensitive (K,Na)NbO3-Based Lead-Free Piezoactuator Ceramics. Adv. Funct. Mater. 2013, 23, 4079–4086. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, F.Y.; Zhao, L.; Wang, K.; Li, L.; Li, J.F. Further Enhancing Piezoelectric Properties by Adding MnO2 in AgSbO3-Modified (Li,K,Na)(Nb,Ta)O3 Lead-Free Piezoceramics. J. Am. Ceram. Soc. 2016, 99, 3670–3676. [Google Scholar] [CrossRef]
- Zheng, T.; Wu, W.; Wu, J.; Zhu, J.; Xiao, D. Balanced development of piezoelectricity, Curie temperature, and temperature stability in potassium-sodium niobhrate lead-free ceramics. J. Mater. Chem. C 2016, 4, 9779–9787. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, F.Y.; Zhang, B.P.; Li, L.; Li, J.F. Dielectric and ferroelectric properties of AgSbO3-modified (Li,K,Na)(Nb,Ta)O3 lead-free piezoceramics. J. Mater. Sci. Mater. Electron. 2015, 26, 9309–9315. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Xiao, D.; Cheng, X.; Zheng, T.; Zhang, B.; Lou, X.; Zhu, J. Large d33 in (K,Na)(Nb,Ta,Sb)O3-(Bi,Na,K)ZrO3 lead-free ceramics. J. Mater. Chem. A 2014, 2, 4122–4126. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, T.; Wu, J.; Xiao, D.; Zhu, J.; Wang, H.; Wang, X.; Lou, X.; Gu, Y. Characteristics of giant piezoelectricity around the rhombohedral-tetragonal phase boundary in (K,Na)NbO3-based ceramics with different additives. J. Mater. Chem. A 2015, 3, 15951–15961. [Google Scholar] [CrossRef]
- Wang, X.; Wu, J.; Xiao, D.; Zhu, J.; Cheng, X.; Zheng, T.; Zhang, B.; Lou, X.; Wang, X. Giant Piezoelectricity in Potassium-Sodium Niobate Lead-Free Ceramics. J. Am. Chem. Soc. 2014, 136, 2905–2910. [Google Scholar] [CrossRef]
- Wu, B.; Wu, H.; Wu, J.; Xiao, D.; Zhu, J.; Pennycook, S.J. Giant Piezoelectricity and High Curie Temperature in Nanostructured Alkali Niobate Lead-Free Piezoceramics through Phase Coexistence. J. Am. Chem. Soc. 2016, 138, 15459–15464. [Google Scholar] [CrossRef]
- Zheng, T.; Wu, J.; Xiao, D.; Zhu, J.; Wang, X.; Lou, X. Potassium-sodium niobate lead-free ceramics: Modified strain as well as piezoelectricity. J. Mater. Chem. A 2015, 3, 1868–1874. [Google Scholar] [CrossRef]
- Zheng, T.; Wu, J. Enhanced piezoelectricity over a wide sintering temperature (400–1050 °C) range in potassium sodium niobate-based ceramics by two step sintering. J. Mater. Chem. A 2015, 3, 6772–6780. [Google Scholar] [CrossRef]
- Xu, K.; Li, J.; Lv, X.; Wu, J.; Zhang, X.; Xiao, D.; Zhu, J. Superior Piezoelectric Properties in Potassium-Sodium Niobate Lead-Free Ceramics. Adv. Mater. 2016, 28, 8519–8523. [Google Scholar] [CrossRef]
- Chen, B.; Ma, J.; Wu, S.; Wu, B. Phase structure and electrical properties of (1−x)K0.48Na0.52NbO3-xBi0.46La0.04(Na0.82K0.18)0.5ZrO3 lead-free piezoceramics. J. Mater. Sci. Mater. Electron. 2017, 28, 3299–3308. [Google Scholar] [CrossRef]
- Lv, X.; Wu, J.; Yang, S.; Xiao, D.; Zhu, J. Identification of Phase Boundaries and Electrical Properties in Ternary Potassium-Sodium Niobate-Based Ceramics. ACS Appl. Mater. Interfaces 2016, 8, 18943–18953. [Google Scholar] [CrossRef] [PubMed]
- Makarovic, M.; Bencan, A.; Walker, J.; Malic, B.; Rojac, T. Processing, piezoelectric and ferroelectric properties of (x)BiFeO3-(1−x)SrTiO3 ceramics. J. Eur. Ceram. Soc. 2019, 39, 3693–3702. [Google Scholar] [CrossRef]
- Yan, F.; Bai, H.; Ge, G.; Lin, J.; Shi, C.; Zhu, K.; Shen, B.; Zhai, J.; Zhang, S. Composition and Structure Optimized BiFeO3-SrTiO3 Lead-Free Ceramics with Ultrahigh Energy Storage Performance. Small 2022, 18, 2106515. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Wang, G.; Li, L.; Huang, Y.; Feteira, A.; Bao, W.; Kleppe, A.K.; Xu, F.; Wang, D.; Reaney, I.M. In situ poling X-ray diffraction studies of lead-free BiFeO3-SrTiO3 ceramics. Mater. Today Phys. 2021, 19, 100426. [Google Scholar] [CrossRef]
- Wu, M.; Fang, L.; Li, G.; Elouadi, B. Dielectric and Ferroelectric Properties of (1−x)BiFeO3-xBi0.5Na0.5TiO3 Solid Solution. Ferroelectrics 2015, 478, 18–25. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, X.; Li, W.; Yuan, C. Structure and piezoelectric properties of Bi0.5Na0.5TiO3- Bi0.5Ka0.5TiO3-BiFeO3 lead-free piezoelectric ceramics. Mater. Chem. Phys. 2009, 114, 832–836. [Google Scholar] [CrossRef]
- Fujii, I.; Ito, Y.; Suzuki, T.; Wada, T. Ferroelectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-BiFeO3 ceramics. J. Mater. Res. 2016, 31, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.H.; Kim, D.J.; Park, J.S.; Kim, S.W.; Song, T.K.; Kim, M.H.; Kim, W.J.; Do, D.; Jeong, I.K. High-Performance Lead-Free Piezoceramics with High Curie Temperatures. Adv. Mater. 2015, 27, 6976–6982. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Kim, S.; Khanal, G.P.; Nam, H.; Fujii, I.; Ueno, S.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. Structural and electrical characteristics of potential candidate lead-free BiFeO3-BaTiO3 piezoelectric ceramics. J. Appl. Phys. 2017, 122, 164105. [Google Scholar] [CrossRef]
- Ismailzade, I.H.; Ismailov, R.M.; Alekberov, A.I.; Salaev, F.M. Investigation of the magnetoelectric (ME)H effect in solid solutions of the systems BiFeO3-BaTiO3 and BiFeO3-PbTiO3. Phys. Status Solidi A 1981, 68, K81–K85. [Google Scholar] [CrossRef]
- Kumar, M.M.; Srinivas, A.; Suryanarayana, S.V. Structure properties relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 2000, 87, 855–862. [Google Scholar] [CrossRef]
- Leontsev, S.O.; Eitel, R.E. Dielectric and Piezoelectric Properties in Mn-Modified (1−x)BiFeO3–xBaTiO3 Ceramics. J. Am. Ceram. Soc. 2009, 92, 2957–2961. [Google Scholar] [CrossRef]
- Kitagawa, S.; Ozaki, T.; Horibe, Y.; Yoshii, K.; Mori, S. Ferroelectric Domain Structures in BiFeO3-BaTiO3. Ferroelectrics 2008, 376, 122–128. [Google Scholar] [CrossRef]
- Calisir, I.; Kleppe, A.K.; Feteir, A.; Hall, D.A. Quenching-assisted actuation mechanisms in core-shell structured BiFeO3-BaTiO3 piezoceramics. J. Mater. Chem. C 2019, 7, 10218–10230. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Fan, Z.; Li, W.; Zhou, D.; Feteira, A.; Wang, G.; Murakami, S.; Sun, S.; Zhao, Q.; Tan, X.; et al. High Energy Storage Density and Large Strain in Bi(Zn2/3Nb1/3)O3-Doped BiFeO3-BaTiO3 Ceramics. ACS Appl. Energy Mater. 2018, 1, 4403–4412. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, B.P.; Zhao, L.; Wang, K.K. Enhanced insulating and piezoelectric properties of BiFeO3-BaTiO3-0.5Na0.5TiO3 ceramics with high Curie temperature. J. Am. Ceram. Soc. 2019, 102, 7355–7365. [Google Scholar] [CrossRef]
- Wei, Y.X.; Wang, X.T.; Jia, J.J.; Wang, X.L. Multiferroic and piezoelectric properties of 0.65BiFeO3-0.35BaTiO3 ceramics with pseudo-cubic symmetry. Ceram. Int. 2012, 38, 3499–3502. [Google Scholar] [CrossRef]
- Chen, J.G.; Cheng, J.R.; Guo, J.; Cheng, Z.X.; Wang, J.L.; Liu, H.B.; Zhang, S.J. Excellent thermal stability and aging behaviors in BiFeO3-BaTiO3 piezoelectric ceramics with rhombohedral phase. J. Am. Ceram. Soc. 2020, 103, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.J.; Fejer, M.M.; Byer, R.L.; Kozlovsky, W.J. Blue light generation by frequency doubling in periodically poled lithium niobate channel wave guide. Electron. Lett. 1989, 25, 731–732. [Google Scholar] [CrossRef]
- Nakamura, K.; Ando, H.; Shimizu, H. Partial domain inversion in LiNbO3 plates and its applications to piezoelectric devices. In Proceedings of the IEEE 1986 Ultrasonics Symposium, Williamsburg, VA, USA, 17–19 November 1986; pp. 527–530. [Google Scholar]
- Nakamura, K.; Shimizu, H. Poling of ferroelectric crystals by using interdigital electrodes and its application to bulk-wave transformer. In Proceedings of the IEEE 1983 Ultrasonics Symposium, Atlanta, GA, USA, 31 October–2 November 1983; pp. 719–722. [Google Scholar]
- Webjorn, J.; Laurell, F.; Arvidsson, G. Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide. IEEE Photonics Technol. Lett. 1989, 1, 316–318. [Google Scholar] [CrossRef]
- Terabe, K.; Higuchi, S.; Takekawa, S.; Nakamura, M.; Goto, T.; Kitamura, K. Nanoscale domain engineering of a Sr0.61Ba0.39Nb2O6 single crystal using a scanning force microscope. Ferroelectrics 2003, 292, 83–89. [Google Scholar] [CrossRef]
- Cho, Y.; Hiranaga, T.; Fujimoto, K.; Wagatsuma, Y.; Ones, A.; Terabe, K.; Kitamura, K. Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy. Trans. Mater. Res. Soc. Jpn. 2003, 28, 109–112. [Google Scholar] [CrossRef]
- Hiranaga, Y.; Fujimoto, K.; Cho, Y.; Wagatsuma, Y.; Onoe, A.; Terabe, K.; Kitamura, K. Nano-sized inverted domain formation in stoichiometric LiTaO3 single crystal using scanning nonlinear dielectric microscopy. Integr. Ferroelectr. 2002, 49, 203–209. [Google Scholar] [CrossRef]
- Jaffe, B.; Cook, W.R., Jr.; Jaffe, H. Piezoelectric Ceramics; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Wada, S.; Yako, K.; Kakemoto, H.; Tsurumi, T.; Erhart, J. Enhanced piezoelectric property of barium titanate single crystals with the different domain sizes. Key Eng. Mater. 2004, 269, 19–22. [Google Scholar] [CrossRef]
- Wada, S.; Tsurumi, T. Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Br. Ceram. Trans. 2004, 103, 93–96. [Google Scholar] [CrossRef]
- Ozaki, T.; Kitagawa, S.; Nishihara, S.; Hosokoshi, Y.; Suzuki, M.; Noguchi, Y.; Miyayama, M.; Mori, S. Ferroelectric Properties and Nano-Scaled Domain Structures in (1−x)BiFeO3-xBaTiO3 (0.33 < x < 0.5). Ferroelectrics 2009, 385, 155–161. [Google Scholar]
- Xun, B.; Song, A.; Yu, J.; Yin, Y.; Li, J.F.; Zhang, B.P. Lead-Free BiFeO3-BaTiO3 Ceramics with High Curie Temperature: Fine Compositional Tuning across the Phase Boundary for High Piezoelectric Charge and Strain Coefficients. ACS Appl. Mater. Interfaces 2021, 13, 4192–4202. [Google Scholar] [CrossRef]
- Mitsui, R.; Fujii, I.; Nakashima, K.; Kumada, N.; Kuroiwa, Y.; Wada, S. Enhancement in the piezoelectric properties of BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 system ceramics by nanodomain. Ceram. Int. 2013, 39, S695–S699. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, L.; Yu, J. Stable piezoelectric property of modified BiFeO3-BaTiO3 lead-free piezoceramics. J. Mater. Sci. Mater. Electron. 2015, 26, 8432–8441. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, C.; Yang, H.; Chen, G.; Li, W.; Wang, H. Dielectric, ferroelectric, and piezoelectric properties of Bi(Ni1/2Ti1/2)O3-modified BiFeO3–BaTiO3 ceramics with high Curie temperature. J. Am. Ceram. Soc. 2012, 95, 3889–3893. [Google Scholar] [CrossRef]
- Murakami, S.; Ahmed, N.T.A.F.; Wand, D.; Feteira, A.; Sinclair, D.C.; Reaney, M.I. Optimising dopants and properties inBiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J. Eur. Ceram. Soc. 2018, 38, 4220–4231. [Google Scholar] [CrossRef]
- Murakami, S.; Wang, D.; Mostaed, A.; Khesro, A.; Feteira, A.; Sinclair, D.C.; Fan, Z.; Tan, X.; Reaney, I.M. High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. J. Am. Ceram. Soc. 2018, 101, 5428–5442. [Google Scholar] [CrossRef]
- Fujii, I.; Mitsui, R.; Nakashima, K.; Kumada, N.; Shimada, M.; Watanabe, T.; Hayashi, J.; Yabuta, H.; Kubota, M.; Fukui, T.; et al. Structural, Dielectric, and Piezoelectric Properties of Mn-Doped BaTiO3–Bi(Mg1/2Ti1/2)O3–BiFeO3 Ceramics. Jpn. J. Appl. Phys. 2011, 50, 09ND07. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, D.J.; Choi, H.I.; Kim, M.H.; Song, T.K.; Kim, W.J.; Do, D. Thermal Quenching Effects on the Ferroelectric and Piezoelectric Properties of BiFeO3-BaTiO3 Ceramics. ACS Appl. Electron. Mater. 2019, 1, 1772–1780. [Google Scholar] [CrossRef]
- Kim, D.S.; Cheon, C.I.; Lee, S.S.; Kim, J.S. Effect of cooling rate on phase transitions and ferroelectric properties in 0.75BiFeO3-0.25BaTiO3 ceramics. Appl. Phys. Lett. 2016, 109, 202902. [Google Scholar] [CrossRef]
- Nam, H.; Kim, S.; Aizawa, T.; Fujii, I.; Ueno, S.; Wada, S. Influence of quenching temperature on piezoelectric and ferroelectrics properties in BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 ceramics. Ceram. Int. 2018, 44, S199–S202. [Google Scholar] [CrossRef]
- Kim, S.; Khanal, G.P.; Nam, H.; Fujii, I.; Ueno, S.; Wada, S. Effects of AC- and DC-bias field poling on piezoelectric properties of Bi-based ceramics. J. Ceram. Soc. Jpn. 2019, 127, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, Y.; Yamamoto, N.; Hosono, Y.; Itsumi, K. Piezoelectric Transducer, Ultrasonic Probe, and Piezoelectric Transducer Manufacturing Method. U.S. Patent 2015/0372219 A1, 24 December 2015. [Google Scholar]
- Yamamoto, N.; Yamashita, Y.; Hosono, Y.; Itsumi, K.; Higuchi, K. Ultrasonic Probe, Piezoelectric Transducer, Method of Manufacturing Ultrasonic Probe, and Method of Manufacturing Piezoelectric Transducer. U.S. Patent 2014/0062261 A1, 6 March 2014. [Google Scholar]
- Wang, D.; Fan, Z.; Zhou, D.; Khesro, A.; Murakami, S.; Feteira, A.; Zhao, Q.; Tan, X.; Reaney, I.M. Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J. Mater. Chem. A 2018, 6, 4133–4144. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Khesro, A.; Murakami, S.; Feteira, A.; Zhao, Q.; Reaney, I.M. Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics. J. Eur. Ceram. Soc. 2017, 37, 1857–1860. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Xiao, P.; Wen, R.; Wan, Y.; Zheng, Q.; Shi, D.; Lam, K.H.; Liu, M.; Lin, D. Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics. J. Mater. Chem. C 2015, 3, 5811–5824. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, H.; Zhou, Q.; Cen, Z.; Li, W.; Yuan, C.; Wang, H. Dielectric, ferroelectric and piezoelectric properties of La-substituted BiFeO3-BaTiO3 ceramics. Ceram. Int. 2013, 39, 4307–4311. [Google Scholar] [CrossRef]
- Zhou, Q.; Zheng, Q.; Li, Y.; Li, Q.; Wan, Y.; Wu, M.; Lin, D. Structure, ferroelectric, ferromagnetic, and piezoelectric properties of Al-modified BiFeO3-BaTiO3 multiferroic ceramics. Phys. Status Solidi A 2014, 212, 632–639. [Google Scholar] [CrossRef]
- Luo, L.; Jiang, N.; Zou, X.; Shi, D.; Sun, T.; Zheng, Q.; Xu, C.; Lam, K.H.; Lin, D. Phase transition, piezoelectric, and multiferroic properties of La(Co0.5Mn0.5)O3-modified BiFeO3-BaTiO3 lead-free ceramics. Phys. Status Solidi A 2015, 212, 2012–2022. [Google Scholar] [CrossRef]
- Zhou, C.; Cen, Z.; Yang, H.; Zhou, Q.; Li, W.; Yuan, C.; Wang, H. Structure, electrical properties of Bi(Fe, Co)O3-BaTiO3 piezoelectric ceramics with improved Curie temperature. Phys. B Condens. Matter. 2013, 410, 13–16. [Google Scholar] [CrossRef]
- Zheng, Q.; Guo, Y.; Lei, F.; Xu, X.; Lin, D. Microstructure, ferroelectric, piezoelectric and ferromagnetic properties of BiFeO3-BaTiO3-Bi(Zn0.5Ti0.5)O3 lead-free multiferroic ceramics. J. Mater. Sci. Mater. Electron. 2014, 25, 2638–2648. [Google Scholar] [CrossRef]
- Peng, X.Y.; Tang, Y.C.; Zhang, B.P.; Zhu, L.F.; Xun, B.W.; Yu, J.R. High Curie temperature BiFeO3-BaTiO3 lead-free piezoelectric ceramics: Ga3+ doping and enhanced insulation properties. J. Appl. Phys. 2021, 130, 144104. [Google Scholar] [CrossRef]
- Lin, D.; Zheng, Q.; Li, Y.; Wan, Y.; Li, Q.; Zhou, W. Microstructure, ferroelectric and piezoelectric properties of Bi0.5K0.5TiO3-modified BiFeO3-BaTiO3 lead-free ceramics with high Curie temperature. J. Eur. Ceram. Soc. 2013, 33, 3023–3036. [Google Scholar] [CrossRef]
- Zhu, L.F.; Zhang, B.P.; Li, S.; Zhao, G.L. Large piezoelectric responses of Bi(Fe,Mg,Ti)O3-BaTiO3 lead-free piezoelecramics near the morphotopic phase boundary. J. Alloys Compd. 2017, 727, 382–389. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, N.; Lam, K.H.; Guo, Y.; Zheng, Q.; Li, Q.; Zhou, W.; Wan, Y.; Lin, D. Structure, ferroelectric, piezoelectric, and ferromagnetic properties of BiFeO3-BaTiO3-Bi0.5Na0.5TiO3 lead-free multiferroic ceramics. J. Am. Ceram. Soc. 2014, 97, 3602–3608. [Google Scholar] [CrossRef]
- Zheng, T.; Jiang, Z.; Wu, J. Enhanced piezoelectricity in (1−x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: Site engineering and wide phase boundary region. Dalton Trans. 2016, 45, 11277–11285. [Google Scholar] [CrossRef]
- Zheng, T.; Ding, Y.; Wu, J. Effects of oxide additives on structure and properties of bismuth ferrite-based ceramics. J. Mater. Sci. Mater. Electron. 2017, 28, 11534–11542. [Google Scholar] [CrossRef]
- Gao, W.; Lv, J.; Lou, X. Large electric-field-induced strain and enhanced piezoelectric constant in CuO-modified BiFeO3-BaTiO3 ceramics. J. Am. Ceram. Soc. 2017, 101, 3383–3392. [Google Scholar] [CrossRef]
- Li, Q.; Wei, J.; Tu, T.; Cheng, J.; Chen, J. Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched BiFeO3-BaTiO3 ceramics. J. Am. Ceram. Soc. 2017, 100, 5573–5583. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, T.; Zhao, C.; Wu, J. Composition design and electrical properties in BiFeO3-BaTiO3-Bi(Zn0.5Ti0.5)O3 lead-free ceramics. J. Mater. Sci. Mater. Electron. 2017, 28, 13076–13083. [Google Scholar] [CrossRef]
- Rojac, T.; Bencan, A.; Drazic, G.; Sakamoto, N.; Ursic, H.; Jancar, B.; Tavcar, G.; Makarovic, M.; Walker, J.; Malic, B.; et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 2017, 16, 322–327. [Google Scholar] [CrossRef]
- Matsuo, H.; Kitanaka, Y.; Inoue, R.; Noguchi, Y.; Miyayama, M. Switchable diode-effect mechanism in ferroelectric BiFeO3 thin film capacitors. J. Appl. Phys. 2015, 118, 114101. [Google Scholar] [CrossRef]
- Rojac, T.; Ursic, H.; Bencan, A.; Malic, B.; Damjanovic, D. Mobile domain walls as a bridge between nanoscale conductivity and macroscopic electromechanical response. Adv. Funct. Mater. 2015, 25, 2099–2108. [Google Scholar] [CrossRef]
- Zheng, Y.; Ding, Y.; Wu, J. Bi nonstoichiometry and composition engineering in (1−x)Bi1+yFeO3+3y/2−xBaTiO3 ceramics. RSC Adv. 2016, 6, 90831–90839. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, J. Enhanced thermal stability of lead-free high temperature 0.75BiFeO3-0.25BaTiO3 ceramics with excess Bi content. J. Alloys Compd. 2014, 589, 115–119. [Google Scholar] [CrossRef]
- Nam, H.; Fujii, I.; Kim, S.; Aizawa, T.; Ueno, S.; Wada, S. Effect of A-site off-stoichiometry on ferroelectric and piezoelectric properties of BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 ceramics. J. Ceram. Soc. Jpn. 2019, 127, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Lee, M.H.; Kim, D.J.; Kim, M.H.; Song, T.K.; Kim, S.W.; Kim, W.J.; Kumar, S. Enhanced Piezoelectric Properties of BaZrO3-substituted 0.67BiFeO3-0.33BaTiO3 Lead-free Ceramics. J. Korean Phys. Soc. 2015, 66, 1106–1109. [Google Scholar] [CrossRef]
- Kim, D.J.; Lee, M.H.; Song, T.K. Comparison of multi-valent manganese oxides (Mn4+, Mn3+, and Mn2+) doping in BiFeO3-BaTiO3 piezoelectric ceramics. J. Eur. Ceram. Soc. 2019, 39, 4697–4704. [Google Scholar] [CrossRef]
- Calisir, I.; Hall, D.A. Chemical heterogeneity and approaches to its control in BiFeO3-BaTiO3 lead-free ferroelectrics. J. Mater. Chem. C 2018, 6, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Calisir, I.; Amirov, A.A.; Kleppe, A.K.; Hall, D.A. Optimisation of functional properties in lead-free BiFeO3-BaTiO3 ceramics through La3+ substitution strategy. J. Mater. Chem. A 2018, 6, 5378–5397. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Li, J.; Zhang, X.; Fan, Z.; Yang, F.; Feteira, A.; Zhou, D.; Sinclair, D.C.; Ma, T.; Tan, X.; et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ. Sci. 2019, 12, 582–588. [Google Scholar] [CrossRef]
- McCartan, S.J.; Calisir, I.; Paterson, G.W.; Webster, R.W.H.; Macgregor, T.A.; Hall, D.A.; MacLaren, I. Correlative chemical and structural nanocharacterization of a pseudo-binary 0.75Bi(Fe0.97Ti0.03)O3-0.25BaTiO3 ceramic. J. Am. Ceram. Soc. 2021, 104, 2388–2397. [Google Scholar] [CrossRef]
- Kim, S.; Khanal, G.P.; Ueno, S.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. Revealing the role of heat treatment in enhancement of electrical properties of lead-free piezoelectric ceramics. J. Appl. Phys. 2017, 122, 014103. [Google Scholar] [CrossRef]
- Li, B.; Li, G.; Yin, Q.; Zhu, Z.; Ding, A.; Cao, W. Pinning and depinning mechanism of defect dipoles in PMnN-PZT ceramics. J. Phys. D Appl. Phys. 2005, 38, 1107–1111. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.D.; Fan, S.H.; Yang, C.H.; Wu, W.B. Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film. Appl. Phys. Lett. 2008, 92, 192905. [Google Scholar] [CrossRef]
- Kasuya, K.; Sato, Y.; Urakami, R.; Yamada, K.; Teranishi, R.; Kaneko, K. Electron microscopic analysis of surface damaged layer in Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal. Jpn. J. Appl. Phys. 2017, 56, 010312. [Google Scholar] [CrossRef]
- Khanal, G.P.; Kim, S.; Fujii, I.; Ueno, S.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. Effect of thermal annealing on crystal structures and electrical properties in BaTiO3 ceramics. J. Appl. Phys. 2018, 124, 034102. [Google Scholar] [CrossRef]
- Nam, H.; Kim, S.; Khanal, G.P.; Fujii, I.; Ueno, S.; Wada, S. Thermal Annealing induced recovery of damaged surface layer for enhanced ferroelectricity in Bi-based ceramics. Jpn. J. Appl. Phys. 2019, 58, SLLD04. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Hall, D.A. Surface structure and quenching effects in BiFeO3-BaTiO3 ceramics. J. Am. Ceram. Soc. 2022, 105, 1265–1275. [Google Scholar] [CrossRef]
- Phapale, S.; Mishra, R.; Das, D. Standard enthalpy of formation and heat capacity of compounds in the pseudo-binary Bi2O3-Fe2O3 system. J. Nucl. Mater. 2008, 373, 137–141. [Google Scholar] [CrossRef]
- Selbach, S.M.; Einarsrud, M.A.; Grande, T. On the Thermodynamic Stability of BiFeO3. Chem. Mater. 2009, 21, 169–173. [Google Scholar] [CrossRef]
- Kim, S.; Khanal, G.P.; Nam, W.; Kim, M.; Fujii, I.; Ueno, S.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. In-situ electric field induced lattice strain response observation in BiFeO3-BaTiO3 lead-free piezoelectric ceramics. J. Ceram. Soc. Jpn. 2018, 126, 316–320. [Google Scholar] [CrossRef] [Green Version]
- Fujii, I.; Iizuka, R.; Nakahira, Y.; Sunada, Y.; Ueno, S.; Nakashima, K.; Magome, E.; Moriyoshi, C.; Kuroiwa, S.; Wada, S. Electric field induced lattice strain in pseudocubic Bi(1/2Ti1/2)O3-modified BaTiO3-BiFeO3 piezoelectric ceramics. Appl. Phys. Lett. 2016, 108, 172903. [Google Scholar] [CrossRef]
- Daniels, J.E.; Jo, W.; Rödel, J.; Jones, J.L. Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: Case study in a 93%(Bi0.5Na0.5)TiO3-7% BaTiO3 piezoelectric ceramics. Appl. Phys. Lett. 2009, 95, 032904. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Ge, W.; Zhang, Q.; Li, J.; Luo, H.; Viehland, D. Crystallographic direction dependence of direct current field induced strain and phase transitions in Na0.5Bi0.5TiO3-x%BaTiO3 single crystals near the morphotropic phase boundary. Appl. Phys. Lett. 2012, 101, 141912. [Google Scholar] [CrossRef] [Green Version]
- Keeble, D.S.; Barney, E.R.; Keen, D.A.; Tucker, M.G.; Kreisel, J.; Thomas, P.A. Bifurcated polarization rotation in bismuth-based piezoelectrics. Adv. Funct. Mater. 2013, 23, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Fan, Z.; Murakami, S.; Lu, Z.; Hall, D.A.; Sinclair, D.C.; Feteira, A.; Tan, X.; Jones, J.L.; Kleppe, A.K.; et al. Origin of the large electrostrain in BiFeO3-BaTiO3 based lead-free ceramics. J. Mater. Chem. A 2019, 7, 21254–21263. [Google Scholar] [CrossRef]
- Levin, I.; Keeble, D.S.; Cibin, G.; Plyford, H.Y.; Eremenko, M.; Krayzman, V.; Laws, W.J.; Reaney, I.M. Nanoscale polar heterogeneities and branching Bi-displacement directions in K0.5Bi0.5TiO3. Chem. Mater. 2019, 31, 2450–2458. [Google Scholar] [CrossRef] [Green Version]
- Kuroiwa, Y.; Kim, S.; Fujii, I.; Ueno, S.; Nakahira, Y.; Moriyoshi, C.; Sato, Y.; Wada, S. Piezoelectricity in perovskite-type pseudo-cubic ferroelectrics by partial ordering of off-centered cations. Commun. Mater. 2020, 1, 71. [Google Scholar] [CrossRef]
- Kim, S.; Nam, H.; Fujii, I.; Ueno, S.; Moriyoshi, C.; Kuroiwa, Y.; Wada, S. A-site cation off-centering contribution on ferroelectricity and piezoelectricity in pseudo-cubic perovskite structure of Bi-based lead-free piezoelectrics. Scr. Mater. 2021, 205, 114176. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Nam, H.; Calisir, I. Lead-Free BiFeO3-Based Piezoelectrics: A Review of Controversial Issues and Current Research State. Materials 2022, 15, 4388. https://doi.org/10.3390/ma15134388
Kim S, Nam H, Calisir I. Lead-Free BiFeO3-Based Piezoelectrics: A Review of Controversial Issues and Current Research State. Materials. 2022; 15(13):4388. https://doi.org/10.3390/ma15134388
Chicago/Turabian StyleKim, Sangwook, Hyunwook Nam, and Ilkan Calisir. 2022. "Lead-Free BiFeO3-Based Piezoelectrics: A Review of Controversial Issues and Current Research State" Materials 15, no. 13: 4388. https://doi.org/10.3390/ma15134388
APA StyleKim, S., Nam, H., & Calisir, I. (2022). Lead-Free BiFeO3-Based Piezoelectrics: A Review of Controversial Issues and Current Research State. Materials, 15(13), 4388. https://doi.org/10.3390/ma15134388