Shear Bond Strength of a Direct Resin Composite to CAD-CAM Composite Blocks: Relative Contribution of Micromechanical and Chemical Block Surface Treatment
Abstract
:1. Introduction
2. Materials and Experimental Procedures
2.1. Samples Preparation
2.2. Surface Treatments
2.3. Shear Bond Strength (SBS) Tests and Failure Mode Determination
- −
- CF-B: cohesive in the block material if more than 75% of fracture regards it;
- −
- AF: adhesive if more than 75% of the block surface is intact and free of resin composite;
- −
- MF: mixed if the intact surface free of the block is between 25 and 75%;
- −
- CF-RC: cohesive in resin composite if more than 75% of fracture regards the resin composite.
2.4. Scanning Electron Microscopy Examination (SEM)
2.5. Statistical Analysis
3. Results
3.1. SBS Values and Failure Mode
3.1.1. SBS for Micromechanical Retention Group
3.1.2. SBS for Chemical Retention Group
3.1.3. SBS for Combination of Micromechanical and Chemical Retention Group
3.1.4. Failure Mode
3.2. SEM Analysis
4. Discussion
4.1. Bond Strength to CAD-CAM Composite Block
4.2. Failure Modes on CAD-CAM Blocks Bonding
4.3. Effect of Micromechanical Surface Treatment
4.4. Effect of Chemical Surface Treatment
4.5. Effect of Combination of Micromechanical and Chemical Surface Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gherlone, E.; Polizzi, E.; Tetè, G.; Capparè, P. Dentistry and COVID-19 pandemic: Operative indications post-lockdown. New Microbiol. 2021, 44, 1–11. [Google Scholar]
- Takahashi, N.; Yabuki, C.; Kurokawa, H.; Takamizawa, T.; Kasahara, Y.; Saegusa, M.; Suzuki, M.; Miyazaki, M. Influence of surface treatment on bonding of resin luting cement to CAD/CAM composite blocks. Dent. Mater. J. 2020, 39, 834–843. [Google Scholar]
- Scolavino, S.; Paolone, G.; Orsini, G.; Devoto, W.; Putignano, A. The Simultaneous Modeling Technique: Closing gaps in posteriors. Int. J. Esthet. Dent. 2016, 11, 58–81. [Google Scholar]
- Nguyen, J.F.; Migonney, V.; Ruse, N.D.; Sadoun, M. Resin composite blocks via high-pressure high-temperature polymerization. Dent. Mater. 2012, 28, 529–534. [Google Scholar]
- Ballini, A.; Mastrangelo, F.; Gastaldi, G.; Tettamanti, L.; Bukvic, N.; Cantore, S.; Cocco, T.; Saini, R.; Desiate, A.; Gherlone, E.; et al. Osteogenic differentiation and gene expression of dental pulp stem cells under low-level laser irradiation: A good promise for tissue engineering. J. Boil. Regul. Homeost. Agents 2015, 29, 813–822. [Google Scholar]
- Porto, T.S.; Roperto, R.C.; Akkus, A.; Akkus, O.; Teich, S.; Faddoul, F.; Porto-Neto, S.T.; Campos, E.A. Effect of storage and aging conditions on the flexural strength and flexural modulus of CAD/CAM materials. Dent. Mater. J. 2019, 38, 264–270. [Google Scholar]
- Wendler, M.; Belli, R.; Valladares, D.; Petschelt, A.; Lohbauer, U. Chairside CAD/CAM materials. Part 3: Cyclic fatigue parameters and lifetime predictions. Dent. Mater. 2018, 34, 910–921. [Google Scholar]
- Chavali, R.; Nejat, A.H.; Lawson, N.C. Machinability of CAD-CAM materials. J. Prosthet. Dent. 2017, 118, 194–199. [Google Scholar]
- Ludovichetti, F.S.; Trindade, F.Z.; Werner, A.; Kleverlaan, C.J.; Fonseca, R.G. Wear resistance and abrasiveness of CAD-CAM monolithic materials. J. Prosthet. Dent. 2018, 120, 318.e1–318.e8. [Google Scholar]
- Blackburn, C.; Rask, H.; Awada, A. Mechanical properties of resin-ceramic CAD-CAM materials after accelerated aging. J. Prosthet. Dent. 2018, 119, 954–958. [Google Scholar]
- Mainjot, A.K.; Dupont, N.M.; Oudkerk, J.C.; Dewael, T.Y.; Sadoun, M.J. From artisanal to CAD-CAM Blocks: State of the art of indirect composites. J. Dent. Res. 2016, 95, 487–495. [Google Scholar]
- Yu, H.; Özcan, M.; Yoshida, K.; Cheng, H.; Sawase, T. Bonding to industrial indirect composite blocks: A systematic review and meta-analysis. Dent. Mater. 2020, 36, 119–134. [Google Scholar]
- El-Damanhoury, H.M.; Elsahn, N.A.; Sheela, S.; Gaintantzopoulou, M.D. Adhesive luting to hybrid ceramic and resin composite CAD/CAM Blocks:Er:YAG Laser versus chemical etching and micro-abrasion pretreatment. J. Prosthodont. Res. 2021, 65, 225–234. [Google Scholar]
- Chuenjit, P.; Suzuki, M.; Shinkai, K. Effect of various surface treatments on the bond strength of resin luting agent and the surface roughness and surface energy of CAD/CAM materials. Dent. Mater. J. 2021, 40, 16–25. [Google Scholar]
- Emsermann, I.; Eggmann, F.; Krastl, G.; Weiger, R.; Amato, J. Influence of pretreatment methods on the adhesion of composite and polymer infiltrated ceramic CAD-CAM blocks. J. Adhes. Dent. 2019, 21, 433–443. [Google Scholar]
- Wetzel, R.; Eckardt, O.; Biehl, P.; Brauer, D.S.; Schacher, F.H. Effect of poly(acrylic acid) architecture on setting and mechanical properties of glass ionomer cements. Dent. Mater. 2020, 36, 377–386. [Google Scholar]
- Pashley, D.H.; Sano, H.; Ciucchi, B.; Yoshiyama, M.; Carvalho, R.M. Adhesion testing of dentin bonding agents: A review. Dent. Mater. 1995, 11, 117–125. [Google Scholar]
- Sirisha, K.; Rambabu, T.; Ravishankar, Y.; Ravikumar, P. Validity of bond strength tests: A critical review—Part II. J. Conserv. Dent. 2014, 17, 420–426. [Google Scholar]
- Hardy, C.M.F.; Landreau, V.; Valassis, M.; Mercelis, B.; De Munck, J.; Van Meerbeek, B.; Leprince, J. Mini-iFT Confirms Superior Adhesive Luting Performance using Light-curing Restorative Composites. J. Adhes. Dent. 2021, 23, 539–548. [Google Scholar]
- Lise, D.P.; Van Ende, A.; De Munck, J.; Vieira, L.; Baratieri, L.N.; Van Meerbeek, B. Microtensile Bond Strength of Composite Cement to Novel CAD/CAM Materials as a Function of Surface Treatment and Aging. Oper. Dent. 2017, 42, 73–81. [Google Scholar]
- Reymus, M.; Roos, M.; Eichberger, M.; Edelhoff, D.; Hickel, R.; Stawarczyk, B. Bonding to new CAD/CAM resin composites: Influence of air abrasion and conditioning agents as pretreatment strategy. Clin. Oral Investig. 2019, 23, 529–538. [Google Scholar]
- Cekic-Nagas, I.; Ergun, G.; Egilmez, F.; Vallittu, P.K.; Lassila, L.V. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials. J. Prosthodont. Res. 2016, 60, 265–273. [Google Scholar]
- François, P.; Remadi, A.; Le Goff, S.; Abdel-Gawad, S.; Attal, J.P.; Dursun, E. Flexural properties and dentin adhesion in recently developed self-adhesive bulk-fill materials. J. Oral Sci. 2021, 63, 139–144. [Google Scholar]
- Ilie, N.; Ruse, N.D. Shear bond strength vs. interfacial fracture toughness—Adherence to CAD/CAM blocks. Dent. Mater. 2019, 35, 1769–1775. [Google Scholar]
- Ruse, N.D.; Sadoun, M.J. Resin-composite blocks for dental CAD/CAM applications. J. Dent. Res. 2014, 93, 1232–1234. [Google Scholar]
- Braga, R.R.; Meira, J.B.; Boaro, L.C.; Xavier, T.A. Adhesion to tooth structure: A critical review of “macro” test methods. Dent. Mater. 2010, 26, e38–e49. [Google Scholar]
- Otani, A.; Amaral, M.; May, L.G.; Cesar, P.F.; Valandro, L.F. A critical evaluation of bond strength tests for the assessment of bonding to Y-TZP. Dent. Mater. 2015, 31, 648–656. [Google Scholar]
- De Kok, P.; de Jager, N.; Veerman, I.A.; Hafeez, N.; Kleverlaan, C.J.; Roeters, J.F. Effect of a retention groove on the shear bond strength of dentin-bonded restorations. J. Prosthet. Dent. 2016, 116, 382–388. [Google Scholar]
- Abdou, A.; Takagaki, T.; Alghamdi, A.; Tichy, A.; Nikaido, T.; Tagami, J. Bonding performance of dispersed filler resin composite CAD/CAM blocks with different surface treatment protocols. Dent. Mater. J. 2021, 40, 209–219. [Google Scholar]
- El Gamal, A.; Medioni, E.; Rocca, J.P.; Fornaini, C.; Muhammad, O.H.; Brulat-Bouchard, N. Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces. Lasers Med. Sci. 2017, 32, 779–785. [Google Scholar]
- Yang, B.; Wolfart, S.; Scharnberg, M.; Ludwig, K.; Adelung, R.; Kern, M. Influence of contamination on zirconia ceramic bonding. J. Dent. Res. 2007, 86, 749–753. [Google Scholar]
- Yano, H.T.; Ikeda, H.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Shimizu, H. Effects of alumina airborne-particle abrasion on the surface properties of CAD/CAM composites and bond strength to resin cement. Dent. Mater. J. 2021, 40, 431–438. [Google Scholar]
- Motevasselian, F.; Amiri, Z.; Chiniforush, N.; Mirzaei, M.; Thompson, V. In vitro evaluation of the effect of different surface treatments of a hybrid ceramic on the microtensile bond strength to a luting resin cement. J. Lasers Med. Sci. 2019, 10, 297–303. [Google Scholar]
- Yoshihara, K.; Nagaoka, N.; Maruo, Y.; Nishigawa, G.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Sandblasting may damage the surface of composite CAD-CAM blocks. Dent. Mater. 2017, 33, e124–e135. [Google Scholar]
- Yin, R.; Jang, Y.S.; Lee, M.H.; Bae, T.S. Comparative evaluation of mechanical properties and wear ability of five CAD/CAM dental blocks. Materials 2019, 12, 2252. [Google Scholar]
- Conejo, J.; Ozer, F.; Mante, F.; Atria, P.J.; Blatz, M.B. Effect of surface treatment and cleaning on the bond strength to polymer-infiltrated ceramic network CAD-CAM material. J. Prosthet. Dent. 2021, 126, 698–702. [Google Scholar]
- Şişmanoğlu, S.; Gürcan, A.T.; Yıldırım-Bilmez, Z.; Turunç-Oğuzman, R.; Gümüştaş, B. Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials. J. Adv. Prosthodont. 2020, 12, 22–32. [Google Scholar]
- Venturini, A.B.; Prochnow, C.; Pereira, G.K.R.; Werner, A.; Kleverlaan, C.J.; Valandro, L.F. The effect of hydrofluoric acid concentration on the fatigue failure load of adhesively cemented feldspathic ceramic discs. Dent. Mater. 2018, 34, 667–675. [Google Scholar]
- Castro, E.F.; Azevedo, V.L.B.; Nima, G.; Andrade, O.S.; Dias, C.T.D.S.; Giannini, M. Adhesion, Mechanical properties, and microstructure of resin-matrix CAD-CAM ceramics. J. Adhes. Dent. 2020, 22, 421–431. [Google Scholar]
- Murillo-Gómez, F.; Palma-Dibb, R.G.; De Goes, M.F. Effect of acid etching on tridimensional microstructure of etchable CAD/CAM materials. Dent. Mater. 2018, 34, 944–955. [Google Scholar] [CrossRef]
- Facenda, J.C.; Borba, M.; Corazza, P.H. A literature review on the new polymer-infiltrated ceramic-network material (PICN). J. Esthet. Restor. Dent. 2018, 30, 281–286. [Google Scholar]
- Abouelleil, H.; Colon, P.; Jeannin, C.; Goujat, A.; Attik, N.; Laforest, L.; Gauthier, R.; Grosgogeat, B. Impact of the microstructure of CAD/CAM blocks on the bonding strength and the bonded interface. J. Prosthodont. 2021, 31, 72–78. [Google Scholar]
- Park, J.H.; Choi, Y.S. Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics. J. Adv. Prosthodont. 2016, 8, 275–284. [Google Scholar]
- Inoue, S.; Abe, Y.; Yoshida, Y.; De Munck, J.; Sano, H.; Suzuki, K.; Lambrechts, P.; Van Meerbeek, B. Effect of conditioner on bond strength of glass-ionomer adhesive to dentin/enamel with and without smear layer interposition. Oper. Dent. 2004, 29, 685–692. [Google Scholar]
- Liebermann, A.; Detzer, J.; Stawarczyk, B. Impact of recently developed universal adhesives on tensile bond strength to computer-aided design/manufacturing ceramics. Oper. Dent. 2019, 44, 386–395. [Google Scholar]
- Yoshihara, K.; Nagaoka, N.; Sonoda, A.; Maruo, Y.; Makita, Y.; Okihara, T.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Effectiveness and stability of silane coupling agent incorporated in ‘universal’ adhesives. Dent. Mater. 2016, 32, 1218–1225. [Google Scholar]
- Cuevas-Suárez, C.E.; de Oliveira da Rosa, W.L.; Vitti, R.P.; da Silva, A.F.; Piva, E. Bonding strength of universal adhesives to indirect substrates: A meta-analysis of in vitro studies. J. Prosthodont. 2020, 29, 298–308. [Google Scholar]
- Spitznagel, F.A.; Horvath, S.D.; Guess, P.C.; Blatz, M.B. Resin bond to indirect composite and new ceramic/polymer materials: A review of the literature. J. Esthet. Restor. Dent. 2014, 26, 382–393. [Google Scholar]
- Frankenberger, R.; Hartmann, V.E.; Krech, M.; Krämer, N.; Reich, S.; Braun, A.; Roggendorf, M. Adhesive luting of new CAD/CAM materials. Int. J. Comput. Dent. 2015, 18, 9–20. [Google Scholar]
- Silva, D.B.D.; Bruzi, G.; Schmitt, B.P.; Filho, A.M.; Andrada, M.A.C. Influence of silanes on the stability of resin-ceramic bond strength. Am. J. Dent. 2019, 32, 89–93. [Google Scholar]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar]
- Barutcigil, K.; Barutcigil, Ç.; Kul, E.; Özarslan, M.M.; Buyukkaplan, U.S. Effect of different surface treatments on bond strength of resin cement to a CAD/CAM restorative material. J. Prosthodont. 2019, 28, 71–78. [Google Scholar]
- Soares, C.J.; Giannini, M.; Oliveira, M.T.; Paulillo, L.A.; Martins, L.R. Effect of surface treatments of laboratory-fabricated composites on the microtensile bond strength to a luting resin cement. J. Appl. Oral Sci. 2004, 12, 45–50. [Google Scholar]
- Yoshida, K.; Kamada, K.; Atsuta, M. Effects of two silane coupling agents, a bonding agent, and thermal cycling on the bond strength of a CAD/CAM composite material cemented with two resin luting agents. J. Prosthet. Dent. 2001, 85, 184–189. [Google Scholar]
- Eldafrawy, M.; Greimers, L.; Bekaert, S.; Gailly, P.; Lenaerts, C.; Nguyen, J.F.; Sadoun, M.; Mainjot, A. Silane influence on bonding to CAD-CAM composites: An interfacial fracture toughness study. Dent. Mater. 2019, 35, 1279–1290. [Google Scholar]
Materials | Abbreviation | Manufacturer | Batch Number | Composition | |
---|---|---|---|---|---|
CAD-CAM blocks | Brilliant Crios (dispersed filler resin block) | BC | Coltene-Whaledent, Altstatten, Switzerland | I28626 | Bis-GMA, BIS-EMA, TEGDMA, 71 wt% barium glass, and silica particles |
Cerasmart 270 (dispersed filler resin block) | CS | GC Corporation, Tokyo, Japan | 2002276 | UDMA, Bis-MEPP, DMA, 71 wt% silica, barium glass | |
Grandio Block (dispersed filler resin block) | GB | Voco, Cuxhaven, Germany | 1810664 | Cross-linked dimethacrylate, 86 wt% inorganic filler. | |
Katana Avencia (dispersed filler resin block) | KA | Kuraray-Noritake, Niigata, Japan | 000740 | UDMA, TEGDMA, 62 wt% Al2O3 and SiO2 | |
Lava Ultimate (dispersed filler resin block) | LU | 3M ESPE, St. Paul, MN, USA | N721285 | Bis-GMA, Bis-EMA, UDMA, TEGDMA, 80 wt% silica and zirconia nanoparticles, zirconia and silica nanoclusters | |
Tetric CAD (dispersed filler resin block) | TC | Ivoclar-Vivadent, AG, Schaan, Liechtenstein | X55553 | Cross-linked dimethacrylate, 80 wt% nanoparticles | |
Shofu Block HC (dispersed filler resin block) | SH | Shofu, Kyoto, Japan | 0819919 | UDMA, Bis-EMA, TEGDMA, 80 wt% SiO2 and ZrO2 particles, and aggregated ZrO2/SiO2-nanoclusters | |
Vita Enamic (PICN) | VE | Vita-Zahnfrabrik, Bad Säckingen, Germany | 78100 | UDMA, TEGDMA, 86 wt% sintered network (SiO2, Al2O3, Na2O, K2O, B2O3, ZrO2, CaO) | |
Direct light-curing resin composite | Z100 | Z100 | 3M ESPE, St Paul, MN, USA | NA59173 | Bis-GMA, TEGDMA, 2-benzotriazolyl-4-methyphenol 2, 84,5 wt% Zirconia/Silica |
Universal Primer | Monobond Plus | MP | Ivoclar-Vivadent, AG, Schaan, Liechtenstein | Y39580 | Ethanol, 3-trimethoxysilylpropyl methacrylate, 10-MDP (MDP), sulfide methacrylate. |
Hydrofluoric Acid | Porcelain Etch | HF | Ultradent Products, South Jordan, UT, USA | BKYL4 | Buffered 9.0% hydrofluoric acid. |
Polyacrylic Acid | Dentin Conditioner | PA | GC Corporation, Tokyo, Japan | 1902121 | Distilled water, polyacrylic acid. |
Group Tested | Specific Protocol |
---|---|
Control | Control group |
SB (micro mechanical retention group) | CAD-CAM block surfaces were sandblasted with 50 µm aluminum oxide at 2 bar pressure for 20 s at a 90° angle and a distance of 10 mm. Then, samples were cleaned by ultrasonication and dried with oil-free air. |
HF (micro mechanical retention group) | CAD-CAM block surfaces were etched with Hydrofluoric acid for 60 s and rinsed thoroughly with water. Finally, samples were dried with a strong stream of oil-free air. |
PA (micro mechanical retention group) | CAD-CAM block surfaces were cleaned with polyacrylic acid for 60 s and rinsed thoroughly with water. Finally, samples were dried with a strong stream of oil-free air. |
MP (chemical retention group) | Universal primer Monobond plus was applied on CAD-CAM block surfaces for 60 s and dried with a strong stream of oil-free air. |
SB + MP (micro mechanical and chemical retention group) | CAD-CAM block surfaces were sandblasted with 50 µm aluminum oxide at 2 bar pressure for 20 s at a 90° angle and a distance of 10 mm. Then, the sample was cleaned by ultrasonication and dried with oil-free air. Finally, Monobond plus was applied on sample surfaces for 60 s and dried with a strong stream of oil-free air. |
HF + MP (micro mechanical and chemical retention group) | CAD-CAM block surfaces were etched with Hydrofluoric acid for 60 s and rinsed thoroughly with water. Then, sample were cleaned by ultrasonication and dried with a strong stream of oil-free air. Finally, Monobond plus was applied on sample surfaces for 60 s and dried with a strong stream of oil-free air. |
PA + MP (micro mechanical and chemical retention group) | CAD-CAM block surface was cleaned with polyacrylic acid for 60 s and rinsed thoroughly with water. Then, the sample was cleaned by ultrasonication and dried with a strong stream of oil-free air. Finally, Monobond plus was applied on sample surfaces for 60 s and dried with a strong stream of oil-free air. |
Material Tested | Subgroup | SBS in MPa (±SD) |
---|---|---|
Brillant Crios | Control | 30.57 (±2.28) J,K,L,M,N,O |
Sandblasting | 38.58 (±1.31) B,C,D,E,F,G,H,I | |
HF | 33.21 (±2.47) H,I,J,K,L,M,N | |
PA | 30.57 (±3.23) J,K,L,M,N,O | |
Universal Primer | 30.67 (±4.21) J,K,L,M,N,O | |
Sandblasting + MP | 39.49 (±2.43) B,C,D,E,F,G,H | |
HF + MP | 33.74 (±2.80) H,I,J,K,L,M,N | |
PA + MP | 30.14 (±2.31) J,K,L,M,N,O | |
Cerasmart 270 | Control | 30.50 (±3.08) J,K,L,M,N,O |
Sandblasting | 41.59 (±2.04) A,B,C,D,E,F | |
HF | 35.52 (±2.35) F,G,H,I,J,K,L | |
PA | 30.03 (±3.11) J,K,L,M,N,O | |
Universal Primer | 31.12 (±3.44) J,K,L,M,N,O | |
Sandblasting + MP | 42.01 (±2.16) A,B,C,D,E | |
HF + MP | 35.75 (±2.35) D,E,F,G,H,I,J,K,L | |
PA + MP | 30.39 (±2.88) J,K,L,M,N,O | |
Grandio Block | Control | 30.65 (±3.07) J,K,L,M,N,O |
Sandblasting | 40.89 (±3.08) A,B,C,D,E,F,G | |
HF | 32.82 (±2.50) I,J,K,L,M,N,O | |
PA | 30.96 (±2.63) J,K,L,M,N,O | |
Universal Primer | 30.65 (±3.07) J,K,L,M,N,O | |
Sandblasting + MP | 42.27 (±2.46) A,B,C | |
HF + MP | 33.45 (±2.76) H,I,J,K,L,M,N | |
PA + MP | 31.17 (±2.55) J,K,L,M,N,O | |
Katana Avencia | Control | 29.52 (±3.52) L,M,N,O |
Sandblasting | 43.75 (±2.93) A,B | |
HF | 35.66 (±1.95) D,E,F,G,H,I,J,K,L | |
PA | 30.26 (±2.34) J,K,L,M,N,O | |
Universal Primer | 30.45 (±3.76) J,K,L,M,N,O | |
Sandblasting + MP | 44.09 (±2.81) A,B | |
HF + MP | 36.47 (±1.89) C,D,E,F,G,H,I,J | |
PA + MP | 30.51 (±2.34) J,K,L,M,N,O | |
Lava Ultimate | Control | 29.80 (±3.57) L,M,N,O |
Sandblasting | 39.07 (±2.24) B,C,D,E,F,G,H,I | |
HF | 32.83 (±2.11) I,J,K,L,M,N,O | |
PA | 30.30 (±3.36) J,K,L,M,N,O | |
Universal Primer | 31.04 (±2.64) J,K,L,M,N,O | |
Sandblasting + MP | 41.01 (±2.48) A,B,C,D,E,F,G | |
HF + MP | 33.09 (±2.56) H,I,J,K,L,M,N | |
PA + MP | 31.20 (±1.82) J,K,L,M,N,O | |
Shofu Block HC | Control | 26.60 (±2.69) O |
Sandblasting | 41.13 (±2.03) A,B,C,D,E,F,G | |
HA | 34.96 (±2.45) G,H,I,J,K,L,M | |
PA | 28.13 (±2.76) N,O | |
Universal Primer | 28.40 (±3.27) N,O | |
Sandblasting + MP | 42.11 (±2.09) A,B,C,D | |
HA + MP | 35.64 (±2.59) E,F,G,H,I,J,K,L | |
PA + MP | 29.81 (±1.94) L,M,N,O | |
Tetric CAD | Control | 29.90 (±3.89) K,L,M,N,O |
Sandblasting | 41.80 (±2.27) A,B,C,D,E,F | |
HF | 31.97 (±2.70) J,K,L,M,N,O | |
PA | 30.69 (±2.33) J,K,L,M,N,O | |
Universal Primer | 30.41 (±3.73) J,K,L,M,N,O | |
Sandblasting + MP | 42.54 (±2.47) A,B,C | |
HF + MP | 33.24 (±2.11) H,I,J,K,L,M,N | |
PA + MP | 30.90 (±2.38) J,K,L,M,N,O | |
Vita Enamic | Control | 28.55 (±2.02) M,N,O |
Sandblasting | 35.45 (±2.27) F,G,H,I,J,K,L | |
HA | 44.94 (±2.29) A,B | |
PA | 30.65 (±2.84) J,K,L,M,N,O | |
Universal Primer | 29.95 (±3.80) K,L,M,N,O | |
Sandblasting + MP | 36.29 (±2.23) C,D,E,F,G,H,I,J,K | |
HA + MP | 46.44 (±2.73) A | |
PA + MP | 30.07 (±2.36) J,K,L,M,N,O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fouquet, V.; Lachard, F.; Abdel-Gawad, S.; Dursun, E.; Attal, J.-P.; François, P. Shear Bond Strength of a Direct Resin Composite to CAD-CAM Composite Blocks: Relative Contribution of Micromechanical and Chemical Block Surface Treatment. Materials 2022, 15, 5018. https://doi.org/10.3390/ma15145018
Fouquet V, Lachard F, Abdel-Gawad S, Dursun E, Attal J-P, François P. Shear Bond Strength of a Direct Resin Composite to CAD-CAM Composite Blocks: Relative Contribution of Micromechanical and Chemical Block Surface Treatment. Materials. 2022; 15(14):5018. https://doi.org/10.3390/ma15145018
Chicago/Turabian StyleFouquet, Vincent, François Lachard, Sarah Abdel-Gawad, Elisabeth Dursun, Jean-Pierre Attal, and Philippe François. 2022. "Shear Bond Strength of a Direct Resin Composite to CAD-CAM Composite Blocks: Relative Contribution of Micromechanical and Chemical Block Surface Treatment" Materials 15, no. 14: 5018. https://doi.org/10.3390/ma15145018
APA StyleFouquet, V., Lachard, F., Abdel-Gawad, S., Dursun, E., Attal, J.-P., & François, P. (2022). Shear Bond Strength of a Direct Resin Composite to CAD-CAM Composite Blocks: Relative Contribution of Micromechanical and Chemical Block Surface Treatment. Materials, 15(14), 5018. https://doi.org/10.3390/ma15145018