Trace Element Contents in Petrol-Contaminated Soil Following the Application of Compost and Mineral Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology of Vegetative Research
2.2. Methodology of the Laboratory and Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schoonover, J.E.; Crim, J.F. An introduction to soil concepts and the role of soils in watershed management. J. Contemp. Water Res. Educ. 2015, 154, 21–47. [Google Scholar] [CrossRef]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 2018, 359, 270–272. [Google Scholar] [CrossRef] [Green Version]
- Silver, W.L.; Perez, T.; Mayer, A.; Jones, A.R. The role of soil in the contribution of food and feed. Phil. Trans. R. Soc. B 2021, 376, 20200181. [Google Scholar] [CrossRef] [PubMed]
- Brevik, E.C.; Sauer, T.J. The past, present, and future of soils and human health studies. Soil 2015, 1, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, U.N.; Wall, D.H.; Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 2015, 40, 63–90. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse gas emissions from soils—A review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Monger, C.; Nave, L.; Smith, P. The role of soil in regulation of climate. Phil. Trans. R. Soc. B 2021, 376, 20210084. [Google Scholar] [CrossRef]
- Skic, K.; Boguta, P.; Sokołowska, Z. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods. Int. Agrophys. 2016, 30, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Makovníková, J.; Pálka, B.; Širáň, M.; Kološta, S. Regulating ecosystem service (filtering/ immobilization of inorganic pollutants) supplied by soil in model regions of Slovakia. J. Geosci. Environ. Prot. 2021, 9, 61–72. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trivedi, P.; Delgado-Baquerizo, M.; Anderson, I.C.; Singh, B.K. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front. Plant Sci. 2016, 7, 990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, T.C.; Pan, P.T.; Cheng, S.S. Ex-situ bioremediation of oil-contaminated soil. J. Hazard. Mater. 2010, 176, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.S.; Romao, L.P.; Araujo, B.R.; Lucas, S.C.; Maciel, S.T.; Wisniewski, A., Jr.; Alexandre, M.R. Environmental strategies to remove volatile aromatic fractions (BTEX) from petroleum industry wastewater using biomass. Bioresour. Technol. 2012, 105, 31–39. [Google Scholar] [CrossRef]
- Labianca, C.; De Gisi, S.; Picardi, F.; Todaro, F.; Notarnicola, M. Remediation of a petroleum hydrocarbon-contaminated site by soil vapor extraction: A full-scale case study. Appl. Sci. 2020, 10, 4261. [Google Scholar] [CrossRef]
- Da Silva, B.; Maranho, L.T. Petroleum-contaminated sites: Decision framework for selecting remediation technologies. J. Hazard. Mater. 2019, 378, 120722. [Google Scholar] [CrossRef] [PubMed]
- Ossai, I.C.; Ahmed, A.; Hassan, A.; Hamid, F.S. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environ. Technol. Innovation. 2020, 17, 100526. [Google Scholar] [CrossRef]
- Ahmed, F.; Fakhruddin, A.N.M. A review on environmental contamination of petroleum hydrocarbons and its biodegradation. Int. J. Environ. Sci. Nat. Res. 2018, 211, 555811. [Google Scholar] [CrossRef]
- Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A.; et al. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ. Res. 2021, 197, 111031. [Google Scholar] [CrossRef] [PubMed]
- Luhach, J.; Chaudhry, S. Effect of diesel fuel contamination on seed germination and growth of four agricultural crops. Univers. J. Environ. Res. Technol. 2012, 2, 311–317. [Google Scholar]
- Ngozi, E.J.; Ifechukwu, A.E.; Lawrence, A.N. Effects of used engine oil polluted-soil on seeds’ germination and seedlings’ growth characteristics of some tropical crops. Int. J. Environ. Agric. Biotechnol. 2017, 2, 812–818. [Google Scholar] [CrossRef]
- Fatokun, K.; Zharare, G.E. Influence of diesel contamination in soil on growth and dry matter partitioning of Lactuca sativa and Ipomoea batatas. J. Environ. Biol. 2015, 36, 1205–1213. [Google Scholar] [PubMed]
- Grifoni, M.; Rosellini, I.; Angelini, P.; Petruzzelli, G.; Pezzarossa, B. The effect of residual hydrocarbons in soil following oil spillages on the growth of Zea mays plants. Environ. Pollut. 2020, 265, 114950. [Google Scholar] [CrossRef] [PubMed]
- Iloeje, A.F.; Aniago, V. Effect of crude oil on permeability properties of the soil. Int. J. Trend Sci. Res. Dev. 2016, 1, 39–43. [Google Scholar] [CrossRef]
- Borowik, A.; Wyszkowska, J.; Kucharski, M.; Kucharski, J. The role of Dactylis glomerata and diesel oil in the formation of microbiome and soil enzyme activity. Sensors 2020, 20, 3362. [Google Scholar] [CrossRef]
- Ganiyu, S.A.; Atoyebi, M.K.; Are, K.S.; Olurin, O.T.; Badmus, B.S. Soil physicochemical and hydraulic properties of petroleum-derived and vegetable oil–contaminated Haplic Lixisol and Rhodic Nitisol in southwest Nigeria. Environ. Monit. Assess. 2019, 191, 559. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Puschenreiter, M.; Gerhard, S.; Sani, S.G.A.; Khan, W.U.; Reichenauer, T.G. Differentiation between physical and chemical effects of oil presence in freshly spiked soil during rhizoremediation trial. Environ. Sci. Pollut. Res. 2019, 26, 18451–18464. [Google Scholar] [CrossRef] [Green Version]
- Andrade, L.; Marcet, P.; Fernández-Feal, L.; Fernández-Feal, C.; Covelo, E.; Vega, F. Impact of the Prestige oil spill on marsh soils: Relationship between heavy metal, sulfide and total petroleum hydrocarbon contents at the Villarrube and Lires marshes (Galicia, Spain). Ciencias Marinas 2004, 30, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Okoro, D.; Oviasogie, P.O.; Oviasogie, F.E. Soil quality assessment 33 months after crude oil spillage and clean-up. Chem. Speciat. Bioavailab. 2011, 23, 1–6. [Google Scholar] [CrossRef]
- Marinescu, M.; Toti, M.; Tănase, V.; Carabulea, V.; Plopeanu, G.; Calciu, I. An assessment of the effects of crude oil pollution on soil properties annuals. Food Sci. Technol. 2010, 11, 94–98. [Google Scholar]
- Essien, O.E.; John, I.A. Impact of crude-oil spillage pollution and chemical remediation on agricultural soil properties and crop growth. J. Appl. Sci. Environ. Manag. 2010, 14, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Borowik, A.; Wyszkowska, J. Response of Avena sativa L. and the soil microbiota to the contamination of soil with Shell diesel oil. Plant Soil Environ. 2018, 64, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Al-Moaikal, R.M.S.; Shukry, W.M.; Azzoz, M.M.; Al-Hawas, G.H.S. Effect of crude oil on germination, growth and seed protein profile of Jojoba (Simmodsia chinensis). Plant Sci. J. 2012, 1, 20–35. [Google Scholar] [CrossRef]
- Jajoo, A.; Mekala, N.R.; Tomar, R.S.; Grieco, M.; Tikkanen, M.; Aro, E.-M. Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity. J. Photochem. Photobiol. B Biol. 2014, 137, 151–155. [Google Scholar] [CrossRef]
- Hussain, I.; Puschenreiter, M.; Gerhard, S.; Schöftner, P.; Yousaf, S.; Wang, A.; Hussain Syed, J.; Reichenauer, T.G. Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environ. Exp. Bot. 2018, 147, 202–219. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, D.; Li, M.; Tang, Q.; Wu, M.; Zhou, H.; Liu, L.; Qu, Y. Bioremediation of petroleum hydrocarbons by alkali–salt-tolerant microbial consortia and their community profiles. J. Chem. Technol. Biotechnol. 2021, 96, 809–817. [Google Scholar] [CrossRef]
- Popoola, L.T.; Yusuff, A.S.; Adeyi, A.A.; Omotara, O.O. Bioaugmentation and biostimulation of crude oil contaminated soil: Process parameters influence. S. Afr. J. Chem. Eng. 2022, 39, 12–18. [Google Scholar] [CrossRef]
- Dermont, G.; Bergeron, M.; Mercier, G.; Richer-Lafleche, M. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazard. Mater. 2008, 152, 1–31. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, R.; Sas-Nowosielska, A.; Małkowski, E.; Japenga, J.; Kuperberg, J.M.; Pogrzeba, M.; Krzyżak, J. The use of indigenous plant species and calcium phosphate for the stabilization of highly metal-polluted sites in southern Poland. Plant Soil 2005, 273, 291–305. [Google Scholar] [CrossRef]
- Epelde, L.; Becerril, J.M.; Mijangos, I.; Garbisu, C. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. J. Environ. Qual. 2009, 38, 2041–2049. [Google Scholar] [CrossRef] [PubMed]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments: A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Galende, M.A.; Becerril, J.M.; Barrutia, O.; Artetxe, U.; Garbisu, C.; Hernández, A. Field assessment of the effectiveness of organic amendments for aided phytostabilization of a Pb–Zn contaminated mine soil. J. Geochem. Explor. 2014, 145, 181–189. [Google Scholar] [CrossRef]
- Alvarenga, P.; Gonçalves, A.P.; Fernandes, R.M.; de Varennes, A.; Vallini, G.; Duarte, E.; Cunha-Queda, A.C. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci. Total Environ. 2008, 406, 43–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, A.; Naveed, M.; Azeem, M.; Yaseen, M.; Ullah, R.; Alamri, S.; Ain Farooq, Q.U.; Siddiqui, M.H. Efficiency of wheat straw biochar in combination with compost and biogas slurry for enhancing nutritional status and productivity of soil and plant. Plants 2020, 9, 1516. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Gulshan, A.B.; Iqbal, J.; Husain, A.; Alwahibi, M.S.; Alkahtani, J.; Dwiningsih, Y.; Bakhsh, A.; Ahmed, N.; Khan, M.J.; et al. Comparative role of animal manure and vegetable waste induced compost for polluted soil restoration and maize growth. Saudi J. Biol. Sci. 2021, 28, 2534–2539. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; World Soil Resources Report; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 182. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 20 May 2022).
- Wyszkowski, M.; Kordala, N. Role of different material amendments in shaping the content of heavy metals in maize (Zea mays L.) on soil polluted with petrol. Materials 2022, 15, 2623. [Google Scholar] [CrossRef]
- US-EPA Method 3051A. Microwave Assisted Acid Digestion of Sediment, Sludges, Soils, and Oils; United States Environmental Protection Agency: Washington, DC, USA, 2007; pp. 1–30. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed on 24 January 2022).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods for Analysis and Evaluation of Soil and Plant Properties; Institute of Environmental Protection: Warsaw, Poland, 1991; pp. 1–334. [Google Scholar]
- ISO 10390; Soil Quality—Determination of pH. International Organization for Standardization: Geneva, Switzerland, 2005.
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 1224. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extractionsmethoden zur Phospor- und Kaliumbestimmung. Ann. R. Agric. Coll. Swed. 1960, 26, 199–215. [Google Scholar]
- Schlichting, E.; Blume, H.P.; Stahr, K. Bodenkundliches Praktikum. Pareys Studientexte 81; Blackwell Wissenschafts-Verlag: Berlin, Germany, 1995. [Google Scholar]
- TIBCO Software Inc. Statistica Version 13; Data Analysis Software System; Tibco Software Inc.: Palo Alto, CA, USA, 2021; Available online: http://statistica.io (accessed on 20 May 2022).
- Okonokhua, B.O.; Ikhajiagbe, B.; Anoliefo, G.O.; Emede, T.O. The effects of spent engine oil on soil properties and growth of maize (Zea mays L.). J. Appl. Sci. Environ. Manag. 2007, 11, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Wyszkowski, M.; Sivitskaya, V. Changes in the content of organic carbon and available forms of macronutrients in soil under the influence of soil contamination with fuel oil and application of different substances. J. Elem. 2012, 17, 139–148. [Google Scholar] [CrossRef]
- Onyeike, E.N.; Ogbuja, S.I.; Nwinuka, N.M. Inorganic ion levels of soils and streams in some areas of Ogoniland, Nigeria as affected by crude oil spillage. Environ. Monit. Assess. 2002, 73, 191–204. [Google Scholar] [CrossRef]
- Adeniyi, A.A.; Afolabi, J.A. Determination of total petroleum hydrocarbons and heavy metals in soils within the vicinity of facilities handling refined petroleum products in Lagos metropolis. Environ. Int. 2002, 28, 79–82. [Google Scholar] [CrossRef]
- Adesina, G.; Adelasoye, K. Effect of crude oil pollution on heavy metal contents, microbial population in soil, and maize and cowpea growth. Agric. Sci. 2014, 5, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Iwegbue, C.M.A. Assessment of heavy metal speciation in soils impacted with crude oil in the Niger Delta, Nigeria. Chem. Speciat. Bioavailab. 2011, 23, 7–15. [Google Scholar] [CrossRef]
- Qaiser, M.S.H.; Ahmad, I.; Ahmad, S.R.; Afzal, M.; Qayyum, A. Assessing heavy metal contamination in oil and gas well drilling waste and soil in Pakistan. Pol. J. Environ. Stud. 2019, 28, 785–793. [Google Scholar] [CrossRef]
- Akpan, G.U.; Udoh, B.T. Evaluation of some properties of soils affected by diesel oil pollution in Uyo, Niger Delta Area, Nigeria. J. Biol. Agric. Healthc. 2013, 3, 33–42. [Google Scholar]
- Cheraghi, M.; Sobhan, A.S.; Lorestani, B.; Merrikhpour, H.; Parvizimosaed, H. Biochemical and physical characterization of petroleum hydrocarbon contaminated soils in Tehran. J. Chem. Health Risks 2015, 5, 199–208. [Google Scholar] [CrossRef]
- Kicińska, A.; Pomykała, R.; Izquierdo-Diaz, M. Changes in soil pH and mobility of heavy metals incontaminated soils. Eur. J. Soil Sci. 2022, 73, 13203. [Google Scholar] [CrossRef]
- Grujić, S.; Ristić, M.; Lausević, M. Heavy metals in petroleum-contaminated surface soils in Serbia. Ann. Chim. 2004, 94, 961–970. [Google Scholar] [CrossRef]
- Vincente-Martorell, J.J.; Galindo-Riano, M.D.; Garcia-Vargas, M.; Granado-Castro, M.D. Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. J. Hazard. Mater. 2009, 162, 823–836. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, V.I.; Adams, R.H.; Vargas-Almeida, M.; Zavala-Cruz, J.; Romero-Frasca, E. Fertility deterioration in a remediated petroleum-contaminated soil. Int. J. Environ. Res. Public. Health 2020, 17, 382. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.; Li, H.; Yan, Z.; Zhou, Y.; Bai, L.; Zhang, C.; Wang, X.; Chen, G. In situ immobilisation of toxic metals in soil using Maifan stone and illite/smectite clay. Sci. Rep. 2018, 8, 4618. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Yuan, F.; Zeng, G.; Li, X.; Gu, Y.; Shi, L.; Liu, W.; Shi, Y. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere 2017, 173, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Willscher, S.; Jablonski, L.; Fona, Z.; Rahmi, R.; Wittig, J. Phytoremediation experiments with under different pH and heavy metal soil concentrations. Hydrometallurgy 2017, 168, 153–158. [Google Scholar] [CrossRef]
- Vondráčková, S.; Hejcman, M.; Tlustoš, P.; Száková, J. Effect of quick lime and dolomite application on mobility of elements (Cd, Zn, Pb, As, Fe, and Mn) in contaminated soils. Pol. J. Environ. Stud. 2013, 22, 577–589. [Google Scholar]
- Nagiel, A.; Szulc, W. Effect of liming on cadmium immobilisation in the soil and content in spring wheat (Triticum aestivum L.). Soil Sci. Ann. 2020, 71, 93–96. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Balbaa, A.A.; Khatab, A.M.; Rinklebe, J. Compost and sulfur affect the mobilization and phytoavailability of Cd and Ni to sorghum and barnyard grass in a spiked fluvial soil. Environ. Geochem. Health 2017, 39, 1305–1324. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Xu, Y.; Liang, X.; Wang, L. In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Appl. Clay. Sci. 2015, 105, 200–206. [Google Scholar] [CrossRef]
- Vrînceanu, N.O.; Motelică, D.M.; Dumitru, M.; Calciu, I.; Tănase, V.; Preda, M. Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copșa Mică case study (Romania). Catena 2019, 176, 336–342. [Google Scholar] [CrossRef]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Ziółkowska, A. Effect of compost, bentonite and CaO on some properties of soil contaminated with petrol and diesel oil. Ecol. Chem. Eng. A 2011, 18, 1373–1384. [Google Scholar]
- Radziemska, M.; Koda, E.; Bilgin, A.; Vaverková, M.D. Concept of aided phytostabilization of contaminated soils in postindustrial areas. Int. J. Environ. Res. Public Health 2017, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, S.; Rinklebe, J.; Selim, M. Impact of various amendments on immobilization and phyto-availability of nickel and zinc in a contaminated floodplain soil. Int. J. Environ. Sci. Technol. 2015, 12, 2765–2776. [Google Scholar] [CrossRef]
- Van Herwijnen, R.; Hutchings, T.R.; Al-Tabbaa, A.; Moffat, A.J.; Johns, M.L.; Ouki, S.K. Remediation of metal contaminated soil with mineral-amended composts. Environ. Pollut. 2007, 150, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Gusiatin, Z.M.; Kulikowska, D. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts. Environ. Technol. 2016, 37, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, E.; Jankowski, K. The Effect of different doses of sewage sludge and liming on total cobalt content and its speciation in soil. Agronomy 2020, 10, 1550. [Google Scholar] [CrossRef]
- Cui, H.; Fan, Y.; Fang, G.; Zhang, H.; Su, B.; Zhou, J. Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: A five-year field experiment. Ecotoxicol. Environ. Saf. 2016, 134, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Kosiorek, M.; Wyszkowski, M. Effect of neutralizing substances on the content of trace elements in soil contaminated with cobalt. Environ. Prot. Eng. 2019, 45, 45–55. [Google Scholar] [CrossRef]
- Radziemska, M.; Wyszkowski, M.; Bęś, A.; Mazur, Z.; Jeznach, J.; Brtnický, M. The applicability of compost, zeolite and calcium oxide in assisted remediation of acidic soil contaminated with Cr(III) and Cr(VI). Environ. Sci. Pollut. Res. Int. 2019, 26, 21351–21362. [Google Scholar] [CrossRef] [Green Version]
- Gray, C.W.; Dunham, S.J.; Dennis, P.G.; Zhao, F.J.; McGrath, S.P. Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ. Pollut. 2006, 142, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Lo, I.M.; Luk, A.F.; Yang, X. Migration of heavy metals in saturated sand and bentonite/soil admixture. J. Environ. Eng. 2004, 130, 906–909. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Tomkiel, M.; Borowik, A.; Baćmaga, M.; Kucharski, J. Effect of bentonite and barley straw on the restoration of the biological quality of agriculture soil contaminated with the herbicide Successor T 550 SE. Agriculture 2021, 11, 27. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Liu, J. Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. Sci. Rep. 2020, 10, 18282. [Google Scholar] [CrossRef]
- Datta, R.; Holatko, J.; Latal, O.; Hammerschmiedt, T.; Elbl, J.; Pecina, V.; Kintl, A.; Balakova, L.; Radziemska, M.; Baltazar, T.; et al. Bentonite-based organic amendment enriches microbial activity in agricultural soils. Land 2020, 9, 258. [Google Scholar] [CrossRef]
Material | Petrol Dose (cm3 kg−1 d.m. of Soil) | Average | r | |||
---|---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | |||
Cadmium (Cd) | ||||||
Without amendments | 0.216 ab | 0.270 bc | 0.342 cd | 0.414 d | 0.311 A | 0.989 |
Compost | 0.270 bc | 0.270 bc | 0.288 bc | 0.288 bc | 0.279 AB | 0.845 |
Bentonite | 0.198 ab | 0.306 bcd | 0.306 bcd | 0.198 ab | 0.252 BC | −0.169 |
CaO | 0.144 a | 0.216 ab | 0.216 ab | 0.306 bcd | 0.221 C | 0.966 |
Average | 0.207 I | 0.266 II | 0.288 II | 0.302 II | 0.266 | 0.884 |
LSDp≤0.01 for: | petrol dose—0.034, materials—0.034, interaction—0.069 | |||||
Lead (Pb) | ||||||
Without amendments | 15.95 a | 19.35 b | 23.48 d | 31.80 g | 22.64 A | 0.999 |
Compost | 33.68 gh | 32.40 g | 22.55 cd | 17.13 a | 26.44 B | −0.959 |
Bentonite | 34.40 hi | 33.65 gh | 32.08 g | 21.15 bc | 30.33 C | −0.941 |
CaO | 15.95 a | 25.93 e | 28.88 f | 35.90 i | 26.66 B | 0.958 |
Average | 25.00 I | 27.83 II | 26.74 III | 26.49 III | 26.52 | 0.280 |
LSDp≤0.01 for: | petrol dose—0.56, materials—0.56, interaction—1.12 | |||||
Chromium (Cr) | ||||||
Without amendments | 13.00 g | 18.33 h | 8.97 f | 8.71 ef | 12.25 A | −0.635 |
Compost | 6.89 d | 5.98 cd | 5.98 cd | 4.68 bc | 5.88 B | −0.970 |
Bentonite | 7.15 de | 5.98 cd | 3.25 ab | 2.08 a | 4.62 C | −0.955 |
CaO | 6.76 d | 6.37 d | 4.16 b | 3.90 b | 5.30 B | −0.898 |
Average | 8.45 I | 9.17 II | 5.59 III | 4.84 IV | 7.01 | −0.864 |
LSDp≤0.01 for: | petrol dose—0.49, materials—0.49, interaction—0.97 |
Material | Petrol Dose (cm3 kg−1 d.m. of Soil) | Average | r | |||
---|---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | |||
Nickel (Ni) | ||||||
Without amendments | 14.56 ab | 17.03 cd | 17.55 de | 17.03 cd | 16.54 A | 0.647 |
Compost | 21.45 g | 20.41 fg | 19.11 ef | 14.04 ab | 18.75 B | −0.979 |
Bentonite | 15.08 ab | 13.65 a | 14.17 ab | 15.86 bcd | 14.69 C | 0.519 |
CaO | 15.73 bcd | 15.60 bc | 14.95 ab | 15.21 abc | 15.37 C | −0.691 |
Average | 16.71 I | 16.67 I | 16.45 I | 15.54 II | 16.34 | −0.951 |
LSDp≤0.01 for: | petrol dose—0.54, materials—0.54, interaction—1.09 | |||||
Zinc (Zn) | ||||||
Without amendments | 29.44 bcd | 33.57 defg | 29.46 bcd | 23.88 a | 29.09 A | −0.766 |
Compost | 34.90 efg | 35.01 efg | 36.55 g | 35.32 fg | 35.45 B | 0.328 |
Bentonite | 30.97 bcdef | 30.84 bcdef | 27.27 abc | 26.92 ab | 29.00 A | −0.880 |
CaO | 28.64 bc | 30.25 bcd | 31.84 cdef | 30.65 bcde | 30.35 A | 0.607 |
Average | 30.99 I | 32.42 I | 31.28 I | 29.19 II | 30.97 | −0.736 |
LSDp≤0.01 for: | petrol dose—1.37, materials—1.37, interaction—2.74 | |||||
Copper (Cu) | ||||||
Without amendments | 2.58 a | 2.80 ab | 2.83 abc | 2.90 abcde | 2.78 A | 0.872 |
Compost | 2.60 a | 2.80 ab | 3.30 def | 3.40 f | 3.03 B | 0.922 |
Bentonite | 3.28 cdef | 3.35 ef | 3.30 def | 3.35 ef | 3.32 C | 0.603 |
CaO | 2.80 ab | 2.85 abcd | 3.20 bcdef | 2.85 abcd | 2.93 AB | 0.185 |
Average | 2.82 I | 2.95 I,II | 3.16 III | 3.13 II,III | 3.01 | 0.833 |
LSDp≤0.01 for: | petrol dose—0.14, materials—0.14, interaction—0.28 |
Material | Petrol Dose (cm3 kg−1 d.m. of Soil) | Average | r | |||
---|---|---|---|---|---|---|
0 | 2.5 | 5 | 10 | |||
Manganese (Mn) | ||||||
Without amendments | 271.8 ab | 299.9 b | 272.6 ab | 258.3 a | 275.6 A | −0.573 |
Compost | 271.7 ab | 283.5 ab | 287.0 ab | 293.4 ab | 283.9 AB | 0.939 |
Bentonite | 271.2 ab | 342.8 c | 291.3 ab | 269.1 ab | 293.6 B | −0.304 |
CaO | 274.1 ab | 282.2 ab | 288.5 ab | 295.1 ab | 284.9 AB | 0.975 |
Average | 272.2 I | 302.1 II | 284.8 I | 279.0 I | 284.5 | −0.061 |
LSDp≤0.01 for: | petrol dose—11.2, materials—11.2, interaction—22.4 | |||||
Iron (Fe) | ||||||
Without amendments | 8307 cde | 9190 ghi | 8472 def | 8225 bcde | 8549 A | −0.357 |
Compost | 7179 a | 7472 a | 9058 fgh | 9333 ghi | 8260 B | 0.911 |
Bentonite | 8174 bcd | 9704 i | 9768 i | 7784 abc | 8857 C | −0.309 |
CaO | 7683 ab | 8829 efg | 9597 hi | 9478 hi | 8897 C | 0.814 |
Average | 7836 I | 8799 II | 9224 III | 8705 II | 8641 | 0.530 |
LSDp≤0.01 for: | petrol dose—180, materials—180, interaction—360 | |||||
Cobalt (Co) | ||||||
Without amendments | 3.12 i | 3.09 i | 2.91 hi | 2.52 ef | 2.91 A | −0.976 |
Compost | 2.82 gh | 2.70 fgh | 2.64 efg | 2.40 de | 2.64 B | −0.994 |
Bentonite | 3.09 i | 2.40 de | 2.10 bc | 1.92 ab | 2.38 C | −0.896 |
CaO | 2.19 cd | 1.89 ab | 1.86 ab | 1.68 a | 1.91 D | −0.928 |
Average | 2.81 I | 2.52 II | 2.38 III | 2.13 IV | 2.46 | −0.978 |
LSDp≤0.01 for: | petrol dose—0.076, materials—0.076, interaction—0.153 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyszkowski, M.; Kordala, N. Trace Element Contents in Petrol-Contaminated Soil Following the Application of Compost and Mineral Materials. Materials 2022, 15, 5233. https://doi.org/10.3390/ma15155233
Wyszkowski M, Kordala N. Trace Element Contents in Petrol-Contaminated Soil Following the Application of Compost and Mineral Materials. Materials. 2022; 15(15):5233. https://doi.org/10.3390/ma15155233
Chicago/Turabian StyleWyszkowski, Mirosław, and Natalia Kordala. 2022. "Trace Element Contents in Petrol-Contaminated Soil Following the Application of Compost and Mineral Materials" Materials 15, no. 15: 5233. https://doi.org/10.3390/ma15155233
APA StyleWyszkowski, M., & Kordala, N. (2022). Trace Element Contents in Petrol-Contaminated Soil Following the Application of Compost and Mineral Materials. Materials, 15(15), 5233. https://doi.org/10.3390/ma15155233