N′-Substituted 4-Phenylpicolinohydrazonamides with Thiosemicarbazone Moiety as New Potential Antitubercular Agents: Synthesis, Structure and Evaluation of Antimicrobial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. General Procedure for the Synthesis of Hydrazonamides (1a–c)
4-Phenyl-N′-(pyrrolidine-1-carbonothioyl) Picolinohydrazonamide (1a)
N′-(Morpholine-4-carbonothioyl)-4-phenylpicolinohydrazonamide (1b)
4-Phenyl-N′-(4-phenylpiperazine-1-carbonothioyl) Picolinohydrazonamide (1c)
2.2. X-ray Study
2.3. ADME
2.4. Tuberculostatic Activity Assay
2.5. In Vitro Antibacterial Activity Assay
3. Results and Discussion
3.1. Chemistry
3.2. X-ray Study
3.3. ADME
3.4. Tuberculostatic Activity
3.5. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
a, b, c (Å) | unit cell parameters in angstroms |
ACSc-5 | (Z)-6-methyl-N′-(4-phenylpiperazine-1-carbonothioyl) picolinohydrazonamide |
ADME | absorption, distribution, metabolism, and excretion |
AIDS | acquired immune deficiency syndrome |
ATCC | American Type Culture Collection |
CCDC | Cambridge Crystallographic Data Centre |
Cip | ciprofloxacin |
COVID-19 | Coronavirus Disease 2019 |
DBU | 1,8-diazabicyclo [5.4.0]undec-7-ene |
DMK-15 | (Z)-N′-(morpholine-4-carbonothioyl)-4-(pyrrolidin-1-yl)picolinohydrazonamide |
DMSO-d6 | isotopologue of dimethyl sulfoxide |
ETB | ethambutol |
F2 | structure factor squared |
FLEX | flexibility |
FT-IR | Fourier-transform infrared spectroscopy |
H37Rv | standard M. tuberculosis strain |
HDF | human dermal fibroblast line |
HIV | human immunodeficiency virus |
IC50 | half-maximal inhibitory concentration |
INH | isoniazid |
INSATU | insaturation |
INSOLU | insolubility |
IR | infrared radiation |
M. tuberculosis | Mycobacterium tuberculosis |
MBC | minimal bactericidal concentration |
MFC | minimal fungicidal concentration |
MIC | minimal inhibition concentration |
Mr | molecular mass |
NMR | nuclear magnetic resonance |
Nys | nystatin |
PAS | p-aminosalicylic acid |
POLAR | polarity |
PZA | pyrazinamide |
R | index based on structure factors describing compatibility of the model with X-ray diffraction data |
RMP | rifampicin |
S | goodness of fit of the refined X-ray structure |
Spec. 192 | strain fully sensitive to the administrated tuberculostatic drugs |
Spec. 210 | strain isolated from tuberculosis patients resistant to PAS, INH, ETB, and RMP |
tPSA | polarity |
UV | ultraviolet |
V (Å3) | volume of a unit cell in cube angstroms |
Van | vancomycin |
WHO | World Health Organization |
WLOGP | lipophilicity |
References
- The End TB Strategy. Available online: https://www.who.int/teams/global-tuberculosis-programme/the-end-tb-strategy (accessed on 14 July 2022).
- Global Tuberculosis Report 2021. World Health Organization: Geneva, Switzerland, 2021. Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 14 October 2021).
- Trend in Tuberculosis. 2020. Available online: https://www.cdc.gov/tb/publications/factsheets/statistics/tbtrends.htm (accessed on 14 July 2022).
- Tiberi, S.; Utjesanovic, N.; Galvin, J.; Centis, R.; D’Ambrosio, L.; Van den Boom, M.; Zumla, A.; Migliori, G.B. Drug resistant TB—Latest developments in epidemiology, diagnostics and management. Int. J. Infect. Dis. 2022. [Google Scholar] [CrossRef] [PubMed]
- Drug-Resistant, T.B. Available online: https://www.cdc.gov/tb/topic/drtb/ (accessed on 14 July 2022).
- Dean, A.S.; Tosas Auguet, O.; Glaziou, P.; Zignol, M.; Ismail, N.; Kasaeva, T.; Floyd, K. 25 years of surveillance of drug-resistant tuberculosis: Achievements, challenges, and way forward. Lancet Infect. Dis. 2022, 22, e191–e196. [Google Scholar] [CrossRef]
- Bhatt, R.; Chopra, K.; Vashisht, R. Impact of integrated psycho-socio-economic support on treatment outcome in drug resistant tuberculosis—A retrospective cohort study. Indian J. Tuberc. 2019, 66, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Dooley, K.E.; Rosenkranz, S.L.; Conradie, F.; Moran, L.; Hafner, R.; Groote-Bidlingmaier, F.; Lama, J.R.; Shenje, J.; De Los Rios, J.; Comins, K.; et al. QT effects of bedaquiline, delamanid, or both in patients with rifampicin-resistant tuberculosis: A phase 2, open-label, randomised, controlled trial. Lancet Infect. Dis. 2021, 21, 975–983. [Google Scholar] [CrossRef]
- Kim, S.; Louie, A.; Drusano, G.L.; Almoslem, M.; Kim, S.; Myrick, J.; Nole, J.; Duncanson, B.; Peloquin, C.A.; Scanga, C.A.; et al. Evaluating the effect of clofazimine against Mycobacterium tuberculosis given alone or in combination with pretomanid, bedaquiline or linezolid. Int. J. Antimicrob. Agents 2022, 59, 106509. [Google Scholar] [CrossRef]
- Santos, F.; Duarte, A.R.C. Combination drug delivery approaches for tuberculosis. In Combination Drug Delivery Approach as an Effective Therapy for Various Diseases; Kesharwani, P., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 173–210. [Google Scholar]
- Krause, M.; Foks, H.; Ziembicka, D.; Augustynowicz-Kopeć, E.; Głogowska, A.; Korona-Głowniak, I.; Bojanowski, K.; Siluk, D.; Gobis, K. 4-substituted picolinohydrazonamides as a new class of potential antitubercular agents. Eur. J. Med. Chem. 2020, 190, 1–10. [Google Scholar] [CrossRef]
- Szczesio, M.; Gobis, K.; Korona-Głowniak, I.; Mazerant-Politowicz, I.; Ziembicka, D.; Foks, H.; Główka, M.; Olczak, A. Synthesis, structure and biological activity of four new picolinohydrazonamide derivatives. Acta Cryst. C 2020, C76, 673–680. [Google Scholar] [CrossRef]
- Gobis, K.; Szczesio, M.; Olczak, A.; Korona-Głowniak, I.; Augustynowicz-Kopeć, E.; Mazernt-Politowicz, I.; Ziembicka, D.; Główka, M.L. Differences in the Structure and Antimicrobial Activity of Hydrazones Derived from Methyl 4-Phenylpicolinimidate. Materials 2022, 15, 3085. [Google Scholar] [CrossRef]
- Brunner, H.; Störiko, R.; Rominger, F. Novel Chiral Oxazoline Ligands for Potential Charge-Transfer Effects in the Rh(I) -Catalysed Enantioselective Hydrosilylation. Eur. J. Inorg. Chem. 1998, 6, 771–781. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Westrip, S.P. publCIF: Software for editing, validating and formatting crystallographic information files. J. Appl. Cryst. 2010, 43, 920–925. [Google Scholar] [CrossRef] [Green Version]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Zoete, V. A Boiled-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.; Foks, H.; Augustynowicz-Kopeć, E.; Napiórkowska, A.; Szczesio, M.; Gobis, K. Synthesis and Tuberculostatic Activity Evaluation of Novel Benzazoles with Alkyl, Cycloalkyl or Pyridine Moiety. Molecules 2018, 23, 985. [Google Scholar] [CrossRef] [Green Version]
- Gacki, M.; Kafarska, K.; Pietrzak, A.; Korona-Głowniak, I.; Wolf, W.M. Quasi-Isostructural Co(II) and Ni(II) Complexes with Mefenamato Ligand: Synthesis, Characterization, and Biological Activity. Molecules 2020, 25, 3099. [Google Scholar] [CrossRef]
- Gobis, K.; Foks, H.; Zwolska, Z.; Augustynowicz-Kopec, E. Synthesis of 2-aminoaryl-5-substituted-1,3,4-thiadiazoles in a thermal 1,3-dipolar cycloaddition reaction. Phosphorus Sulfur 2005, 180, 2653–2666. [Google Scholar] [CrossRef]
- Parsons, S.; Flack, H.D.; Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Cryst. B 2013, 69, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendolski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 3, 3867–3877. [Google Scholar] [CrossRef] [PubMed]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001, 44, 1841–1946. [Google Scholar] [CrossRef]
- O’Donnell, F.; Smyth, T.J.P.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int. J. Antimicrob. Agents 2009, 35, 30–38. [Google Scholar] [CrossRef] [Green Version]
1a | 1b | 1c | |
---|---|---|---|
Crystal Data | |||
Chemical formula | C17H19N5S | C17H19N5OS | 2(C23H24N6S) |
Mr | 325.43 | 341.43 | 833.08 |
Space group | P21/c | P21/c | P21 |
a, b, c (Å) | 13.3591 (4), 12.0691 (4), 9.9817 (3) | 5.9419 (4), 12.1487 (7), 22.9938 (13) | 6.2510 (3), 11.9035 (5), 27.8679 (12) |
β (°) | 101.248 (2) | 96.549 (2) | 93.696 (2) |
V (Å3) | 1578.46 (9) | 1649.01 (17) | 2069.30 (16) |
Z | 4 | 4 | 2 |
μ (mm−1) | 1.87 | 1.86 | 1.56 |
Crystal size (mm) | 0.87 × 0.24 × 0.20 | 1.24 × 0.18 × 0.14 | 1.0 × 0.41 × 0.13 |
Data Collection | |||
No. of measured, independent and observed [I > 2σ(I)] reflections | 21324, 3119, 2979 | 17762, 3213, 3185 | 8030, 8030, 8024 |
(sin θ/λ)max (Å−1) | 0.618 | 0.618 | 0.618 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.076, 1.05 | 0.027, 0.073, 1.04 | 0.026, 0.074, 1.13 |
No. of reflections | 3119 | 3213 | 8030 |
No. of parameters | 220 | 230 | 568 |
No. of restraints | 0 | 0 | 1 |
Δmax, Δmin (e Å−3) | 0.22, −0.32 | 0.34, −0.18 | 0.20, −0.19 |
Absolute structure | – | – | Flack x determined using 3129 quotients [(I+) − (I-)]/[(I+) + (I-)] [26] |
Absolute structure parameter | – | – | 0.046 (4) |
Compd. | MIC 1 [µg/mL] | ||
---|---|---|---|
H37Rv 2 | Spec. 192 | Spec. 210 | |
1a | 6.2 | 12.5 | 6.2 |
1b | 3.1 | 3.1 | 3.1 |
1c | 50 | 50 | 50 |
INH 3 | 12.5 | 12.5 | 25 |
PZA 3 | 25 | 25 | >400 |
Mycobacterium Strain | MIC [µg/mL] |
---|---|
M. tuberculosis H37Rv | 3.1 |
M. bovis | 3.1 |
M. kanssasi | 12.5 |
M. intracellulare | 6.2 |
M. scrafulaceum | 12.5 |
1a | 1b | 1c | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MBC/MIC Ratio | MIC | MBC | MBC/MIC Ratio | MIC | MBC | MBC/MIC Ratio | MIC | |
Gram-Positive Bacteria | Van | |||||||||
S. aureus ATCC 25923 | 1.95 | 15.6 | 8 | 1.95 | 1.95 | 1 | 0.98 | 31.3 | 32 | 0.98 |
S. aureus ATCC 43300 | 3.9 | 125 | 32 | 1.95 | 250 | 128 | 0.49 | 31.3 | 64 | 0.49 |
S. aureus ATCC 6538 | 3.9 | 62.5 | 16 | 1.95 | 125 | 64 | 1.95 | 31.3 | 16 | 0.49 |
S. epidermidis ATCC 12228 | 1.95 | 125 | 64 | 0.98 | 31.3 | 16 | 0.49 | 31.3 | 64 | 0.98 |
M. luteus ATCC 10240 | 0.49 | 15.6 | 32 | 1.95 | 1.95 | 1 | 0.06 | 15.6 | 260 | 0.12 |
B. cereus ATCC 10876 | 3.9 | 31.3 | 8 | 7.8 | >1000 | >128 | 31.3 | 31.3 | 1 | 0.98 |
B. subtilis ATCC 6633 | 3.9 | 62.5 | 16 | 0.98 | 0.98 | 1 | 31.3 | 31.3 | 1 | 0.24 |
S. pyogenes ATCC 19615 | 7.8 | 15.6 | 2 | 15.6 | 31.3 | 2 | 62.5 | 125 | 2 | 0.24 |
S. mutans ATCC 25175 | 3.9 | 15.6 | 4 | 31.3 | >1000 | >32 | 62.5 | 62.5 | 1 | 0.98 |
S. pneumoniae ATCC 49619 | 7.8 | 31.3 | 4 | 31.3 | 31.3 | 1 | 31.3 | 125 | 4 | 0.24 |
Gram-Negative Bacteria | Cip | |||||||||
E. coli ATCC 25922 | 1000 | >1000 | Nd | 125 | >1000 | >8 | 125 | >1000 | >8 | 0.015 |
S. typhimurium ATCC 14028 | 250 | >1000 | >4 | 125 | >1000 | >8 | 125 | >1000 | >8 | 0.061 |
K. pneumoniae ATCC 13883 | >1000 | >1000 | Nd | 500 | >1000 | Nd | 125 | >1000 | >8 | 0.122 |
P. mirabilis ATCC 12453 | 125 | >1000 | >8 | 31.3 | >1000 | >32 | 62.5 | >1000 | >16 | 0.030 |
P. aeruginosa ATCC 9027 | 500 | >1000 | Nd | 31.3 | >1000 | >32 | 62.5 | >1000 | >16 | 0.488 |
Yeasts | MIC | MFC | MIC | MFC | MIC | MFC | Nys | |||
C. albicans ATCC 102231 | 15.6 | 62.5 | 4 | 15.6 | 62.5 | 2 | 7.8 | 7.8 | 1 | 0.48 |
C. parapsilosis ATCC 22019 | 62.5 | 62.5 | 1 | 15.6 | 125 | 8 | 7.8 | 31.3 | 4 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gobis, K.; Szczesio, M.; Olczak, A.; Mazerant-Politowicz, I.; Ziembicka, D.; Pacholczyk-Sienicka, B.; Augustynowicz-Kopeć, E.; Głogowska, A.; Korona-Głowniak, I.; Fruziński, A. N′-Substituted 4-Phenylpicolinohydrazonamides with Thiosemicarbazone Moiety as New Potential Antitubercular Agents: Synthesis, Structure and Evaluation of Antimicrobial Activity. Materials 2022, 15, 5513. https://doi.org/10.3390/ma15165513
Gobis K, Szczesio M, Olczak A, Mazerant-Politowicz I, Ziembicka D, Pacholczyk-Sienicka B, Augustynowicz-Kopeć E, Głogowska A, Korona-Głowniak I, Fruziński A. N′-Substituted 4-Phenylpicolinohydrazonamides with Thiosemicarbazone Moiety as New Potential Antitubercular Agents: Synthesis, Structure and Evaluation of Antimicrobial Activity. Materials. 2022; 15(16):5513. https://doi.org/10.3390/ma15165513
Chicago/Turabian StyleGobis, Katarzyna, Małgorzata Szczesio, Andrzej Olczak, Ida Mazerant-Politowicz, Dagmara Ziembicka, Barbara Pacholczyk-Sienicka, Ewa Augustynowicz-Kopeć, Agnieszka Głogowska, Izabela Korona-Głowniak, and Andrzej Fruziński. 2022. "N′-Substituted 4-Phenylpicolinohydrazonamides with Thiosemicarbazone Moiety as New Potential Antitubercular Agents: Synthesis, Structure and Evaluation of Antimicrobial Activity" Materials 15, no. 16: 5513. https://doi.org/10.3390/ma15165513
APA StyleGobis, K., Szczesio, M., Olczak, A., Mazerant-Politowicz, I., Ziembicka, D., Pacholczyk-Sienicka, B., Augustynowicz-Kopeć, E., Głogowska, A., Korona-Głowniak, I., & Fruziński, A. (2022). N′-Substituted 4-Phenylpicolinohydrazonamides with Thiosemicarbazone Moiety as New Potential Antitubercular Agents: Synthesis, Structure and Evaluation of Antimicrobial Activity. Materials, 15(16), 5513. https://doi.org/10.3390/ma15165513