Influence of Copper and Zinc Tailing Powder on the Hydration of Composite Cementitious Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mix Design
2.2. Test Methods
3. Results and Discussion
3.1. Characteristics of Hydration Heat Evolution
3.2. Strength Development
3.3. Pore Evolution
3.4. Chemically Bonded Water
3.5. Powder X-ray Diffraction
3.6. Scanning Electron Microscopy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walling, S.A.; Provis, J.L. Magnesia-based cements: A journey of 150 years, and cements for the future? Chem. Rev. 2016, 116, 4170–4204. [Google Scholar] [CrossRef]
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Han, F.H.; Zhang, H.B.; Liu, J.H.; Song, S.M. Influence of iron tailing powder on properties of concrete with fly ash. Powder Technol. 2022, 398, 117132. [Google Scholar] [CrossRef]
- Schade, T.; Bellmann, F.; Middendorf, B. Quantitative analysis of C-(K)-A-S-H-amount and hydrotalcite phase content in finely ground highly alkali-activated slag/silica fume blended cementitious material. Cem. Concr. Res. 2022, 153, 106706. [Google Scholar] [CrossRef]
- Han, F.H.; Zhou, Y.; Zhang, Z.Q. Effect of gypsum on the properties of composite binder containing high-volume slag and iron tailing powder. Constr. Build. Mater. 2020, 252, 119023. [Google Scholar] [CrossRef]
- Yang, Q.B.; Zhu, B.R. Effect of steel fiber on the deicer-scaling resistance of concrete. Cem. Concr. Res. 2005, 35, 2360–2363. [Google Scholar]
- Han, F.H.; Zhang, H.B.; Pu, S.C.; Zhang, Z.Q. Hydration heat and kinetics of composite binder containing blast furnace ferronickel slag at different temperatures. Thermochim. Acta 2021, 702, 178985. [Google Scholar] [CrossRef]
- Wang, D.Q.; Wang, Q.; Huang, Z.X. Reuse of copper slag as a supplementary cementitious material: Reactivity and safety. Resour. Conserv. Recycl. 2020, 162, 105037. [Google Scholar] [CrossRef]
- Huang, X.Y.; Ni, W.; Cui, W.H.; Wang, Z.J.; Zhu, L.P. Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag. Constr. Build. Mater. 2012, 27, 1–5. [Google Scholar] [CrossRef]
- Dang, J.; Li, J.C.; Lv, X.W.; Yuan, S.; Leszczynska-Sejda, K. Metallurgical slag. Crystals 2022, 12, 407. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, Y.W.; Wang, W.S.; Yang, J.D.; Wang, H.Y.; Li, N.; Wang, W. Flexural behavior evaluation and energy dissipation mechanisms of modified iron tailings powder incorporating cement and fibers subjected to freeze-thaw cycles. J. Clean. Prod. 2022, 351, 131527. [Google Scholar] [CrossRef]
- Feng, W.P.; Dong, Z.J.; Jin, Y.; Cui, H.Z. Comparison on micromechanical properties of interfacial transition zone in concrete with iron ore tailings or crushed gravel as aggregate. J. Clean. Prod. 2021, 319, 128737. [Google Scholar] [CrossRef]
- Ma, B.G.; Cai, L.X.; Li, X.G.; Jian, S.W. Utilization of iron tailings as substitute in autoclaved aerated concrete: Physico-mechanical and microstructure of hydration products. J. Clean. Prod. 2016, 127, 162–171. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Eren, O. Rheology, strength and durability properties of mortars containing copper tailings as a cement replacement material. Eur. J. Environ. Civ. Eng. 2013, 17, 19–31. [Google Scholar] [CrossRef]
- Ghazi, A.B.; Jamshidi-Zanjani, A.; Nejati, H. Utilization of copper mine tailings as a partial substitute for cement in concrete construction. Constr. Build. Mater. 2022, 317, 125921. [Google Scholar] [CrossRef]
- Jamshidi-Zanjani, A.; Saeedi, M. Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland. Environ. Earth Sci. 2013, 70, 1791–1808. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Yap, S.P.; Lee, S.C. Green concrete partially comprised of farming waste residues: A review. J. Clean. Prod. 2016, 117, 122–138. [Google Scholar] [CrossRef]
- Yao, G.; Wang, Q.; Wang, Z.M.; Wang, J.X.; Lyu, X.J. Activation of hydration properties of iron ore tailings and their application as supplementary cementitious materials in cement. Powder Technol. 2020, 360, 863–871. [Google Scholar] [CrossRef]
- Lv, X.D.; Shen, W.G.; Wang, L.; Dong, Y.; Zhang, J.F.; Xie, Z.Q. A comparative study on the practical utilization of iron tailings as a complete replacement of normal aggregates in dam concrete with different gradation. J. Clean. Prod. 2019, 211, 704–715. [Google Scholar] [CrossRef]
- Protasio, F.N.M.; de Avillez, R.R.; Letichevsky, S.; Silva, F.D. The use of iron ore tailings obtained from the Germano dam in the production of a sustainable concrete. J. Clean. Prod. 2021, 278, 123929. [Google Scholar] [CrossRef]
- Shettima, A.U.; Hussin, M.W.; Ahmad, Y.; Mirza, J. Evaluation of iron ore tailings as replacement for fine aggregate in concrete. Constr. Build. Mater. 2016, 120, 72–79. [Google Scholar] [CrossRef]
- Lu, L.C.; Wang, J.; Chang, J.; Cheng, X. The effect of copper and zinc tailling powder on clinker calcination and cement properties. J. Jinan Univ. 2002, 16, 11–13. [Google Scholar]
- Qiu, G.H.; Shi, Z.L. Utilization of coal gangue and copper tailings as clay for cement clinker calcinatio. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011, 26, 183–188. [Google Scholar] [CrossRef]
- Chen, Q.S.; Tao, Y.B.; Feng, Y.; Zhang, Q.L.; Liu, Y.K. Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill. J. Environ. Manag. 2021, 290, 112608. [Google Scholar] [CrossRef]
- Behera, S.K.; Mishra, D.P.; Singh, P.; Mishra, K.; Mandal, S.; Ghosh, C.N.; Kumar, R.; Mandal, P.K. Utilization of mill tailings, fly ash and slag as mine paste backfill material: Review and future perspective. Constr. Build. Mater. 2021, 309, 125120. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wang, Q.; Huang, Z.X. Value-added utilization of copper slag to enhance the performance of magnesium potassium phosphate cement. Resour. Conserv. Recycl. 2022, 180, 106212. [Google Scholar] [CrossRef]
- Liu, S.H.; Wang, L.; Li, Q.L.; Song, J.W. Hydration properties of Portland cement-copper tailing powder composite binder. Constr. Build. Mater. 2020, 251, 118882. [Google Scholar] [CrossRef]
- Han, F.H.; He, X.J.; Zhang, Z.Q.; Liu, J.H. Hydration heat of slag or fly ash in the composite binder at different temperatures. Thermochim. Acta 2017, 655, 202–210. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties ans Materials; McGraw Hill: New York, NY, USA, 2005. [Google Scholar]
- Wu, Z.W. Discussion on recent development of concrete science and technology. J. Chin. Ceram. Soc. 1979, 3, 82–90. [Google Scholar]
- Fagerlund, G. Chemically Bound Water as Measure of Degree of Hydration: Method and Potential Errors; Lund Institute of Technology: Lund, Sweden, 2009. [Google Scholar]
- Liu, R.G. Hydration mechanism and long-term performance of cement-slag complex cementitious materials. Ph.D. Thesis, Tsinghua University, Beijing, China, 2013. [Google Scholar]
- Lothenbach, B.; Matschei, T.; Moschner, G.; Glasser, F.P. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 2008, 38, 1–18. [Google Scholar] [CrossRef]
Materials | SiO2 | Fe2O3 | CaO | MnO | MgO | SO3 | Al2O3 | ZnO | K2O | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|
Cement | 20.55 | 3.27 | 62.50 | - | 2.61 | 2.93 | 4.59 | - | - | - |
CZTP | 37.10 | 22.16 | 19.90 | 6.93 | 1.26 | 5.47 | 4.74 | 0.73 | 0.59 | 0.49 |
Sample ID | w/b | Binder Composition/% | |
---|---|---|---|
Cement | CZTP | ||
3_0b | 0.30 | 100 | 0 |
3_10b | 90 | 10 | |
3_20b | 80 | 20 | |
3_30b | 70 | 30 | |
3_50b | 50 | 50 | |
4.5_0b | 0.45 | 100 | 0 |
4.5_10b | 90 | 10 | |
4.5_20b | 80 | 20 | |
4.5_30b | 70 | 30 | |
4.5_50b | 50 | 50 |
Sample ID | w/b | Binder Composition/% | Standard Sand/g | Superplasticizer/g | |
---|---|---|---|---|---|
Cement | CZTP | ||||
3_0m | 0.30 | 450 | 0 | 1350 | 10.8 |
3_10m | 405 | 45 | |||
3_20m | 360 | 90 | |||
3_30m | 315 | 135 | |||
3_50m | 225 | 225 | |||
4.5_0m | 0.45 | 100 | 0 | 1350 | 7.6 |
4.5_10m | 90 | 10 | |||
4.5_20m | 80 | 20 | |||
4.5_30m | 70 | 30 | |||
4.5_50m | 50 | 50 |
Sample | Rate of the Second Heat Emission Peak qmax (J/g·h) | Total Heat Release (J/g) | Heat Release per Gram of Cement | ||||||
---|---|---|---|---|---|---|---|---|---|
12 h | 48 h | 60 h | 72 h | 12 h | 48 h | 60 h | 72 h | ||
3_0b | 16.484 | 114.2 | 229.3 | 237.7 | 242.6 | 114.2 | 229.3 | 237.7 | 242.6 |
3_20b | 15.155 | 107.1 | 210.4 | 221.3 | 228.6 | 133.9 | 263.0 | 276.6 | 285.8 |
3_50b | 11.268 | 74.1 | 151.3 | 162.9 | 171.5 | 148.2 | 302.6 | 325.8 | 343.0 |
4.5_0b | 14.606 | 101.7 | 231.2 | 250.7 | 265.3 | 101.7 | 231.2 | 250.7 | 265.3 |
4.5_20b | 13.107 | 93.1 | 205.5 | 223.3 | 237.0 | 116.4 | 256.9 | 279.1 | 296.3 |
4.5_50b | 10.020 | 66.5 | 147.5 | 160.9 | 171.1 | 133.0 | 295.0 | 321.8 | 342.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, W.; Han, F.; Zhang, K. Influence of Copper and Zinc Tailing Powder on the Hydration of Composite Cementitious Materials. Materials 2022, 15, 5612. https://doi.org/10.3390/ma15165612
Han W, Han F, Zhang K. Influence of Copper and Zinc Tailing Powder on the Hydration of Composite Cementitious Materials. Materials. 2022; 15(16):5612. https://doi.org/10.3390/ma15165612
Chicago/Turabian StyleHan, Weiwei, Fanghui Han, and Ke Zhang. 2022. "Influence of Copper and Zinc Tailing Powder on the Hydration of Composite Cementitious Materials" Materials 15, no. 16: 5612. https://doi.org/10.3390/ma15165612
APA StyleHan, W., Han, F., & Zhang, K. (2022). Influence of Copper and Zinc Tailing Powder on the Hydration of Composite Cementitious Materials. Materials, 15(16), 5612. https://doi.org/10.3390/ma15165612