Effect of Bonding Protocols on the Performance of Luting Agents Applied to CAD–CAM Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. μSBS Test
2.3. Surface Scanning Electron Microscopy (SEM) and Spectroscopy by Energy-Dispersive X-ray Spectroscopy (EDS)
2.4. Statistical Analysis
3. Results
3.1. μSBS Test
3.2. Fracture Pattern (PF)
3.3. Surface Scanning Electron Microscopy (SEM)
3.4. Energy-Dispersive X-ray Spectroscopy (EDS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emsermann, I.; Eggmann, F.; Krastl, G.; Weiger, R.; Amato, J. Influence of Pretreatment Methods on the Adhesion of Composite and Polymer Infiltrated Ceramic CAD-CAM Blocks. J. Adhes. Dent. 2019, 21, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Yoo, Y.J.; Shin, Y.J.; Cho, B.H.; Baek, S.H. Marginal and internal fit of nano-composite CAD/CAM restorations. Restor. Dent. Endod. 2016, 41, 37–43. [Google Scholar] [CrossRef]
- Spitznagel, F.A.; Horvath, S.D.; Guess, P.C.; Blatz, M.B. Resin bond to indirect composite and new ceramic/polymer materials: A review of the literature. J. Esthet. Restor. Dent. 2014, 26, 382–393. [Google Scholar] [CrossRef]
- Awad, M.M.; Alqahtani, H.; Al-Mudahi, A.; Murayshed, M.S.; Alrahlah, A.; Bhandi, S.H. Adhesive Bonding to Computer-aided Design/ Computer-aided Manufacturing Esthetic Dental Materials: An Overview. J. Contemp. Dent. Pract. 2017, 18, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Stawarczyk, B.; Ozcan, M.; Trottmann, A.; Schmutz, F.; Roos, M.; Hammerle, C. Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists. J. Prosthet. Dent. 2013, 109, 325–332. [Google Scholar] [CrossRef]
- Tsitrou, E.A.; Northeast, S.E.; van Noort, R. Evaluation of the marginal fit of three margin designs of resin composite crowns using CAD/CAM. J. Dent. 2007, 35, 68–73. [Google Scholar] [CrossRef]
- Gungor, M.B.; Nemli, S.K.; Bal, B.T.; Unver, S.; Dogan, A. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials. J. Adv. Prosthodont. 2016, 8, 259–266. [Google Scholar] [CrossRef]
- Naves, L.Z.; Soares, C.J.; Moraes, R.R.; Goncalves, L.S.; Sinhoreti, M.A.; Correr-Sobrinho, L. Surface/interface morphology and bond strength to glass ceramic etched for different periods. Oper. Dent. 2010, 35, 420–427. [Google Scholar] [CrossRef]
- Sato, K.; Matsumura, H.; Atsuta, M. Effect of three-liquid bonding agents on bond strength to a machine-milled ceramic material. J. Oral Rehabil. 1999, 26, 570–574. [Google Scholar] [CrossRef]
- Graiff, L.; Piovan, C.; Vigolo, P.; Mason, P.N. Shear bond strength between feldspathic CAD/CAM ceramic and human dentine for two adhesive cements. J. Prosthodont. 2008, 17, 294–299. [Google Scholar] [CrossRef]
- Campos, F.; Almeida, C.S.; Rippe, M.P.; de Melo, R.M.; Valandro, L.F.; Bottino, M.A. Resin Bonding to a Hybrid Ceramic: Effects of Surface Treatments and Aging. Oper. Dent. 2016, 41, 171–178. [Google Scholar] [CrossRef]
- Siqueira, F.; Cardenas, A.M.; Gutierrez, M.F.; Malaquias, P.; Hass, V.; Reis, A.; Loguercio, A.D.; Perdigao, J. Laboratory Performance of Universal Adhesive Systems for Luting CAD/CAM Restorative Materials. J. Adhes. Dent. 2016, 18, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Kassotakis, E.M.; Stavridakis, M.; Bortolotto, T.; Ardu, S.; Krejci, I. Evaluation of the Effect of Different Surface Treatments on Luting CAD/CAM Composite Resin Overlay Workpieces. J. Adhes. Dent. 2015, 17, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Ceci, M.; Pigozzo, M.; Scribante, A.; Beltrami, R.; Colombo, M.; Chiesa, M.; Poggio, C. Effect of glycine pretreatment on the shear bond strength of a CAD/CAM resin nano ceramic material to dentin. J. Clin. Exp. Dent. 2016, 8, e146–e152. [Google Scholar] [CrossRef] [PubMed]
- Nejat, A.H.; Lee, J.; Shah, S.; Lin, C.P.; Kulkarni, P.; Chavali, R.; Lawson, N.C. Retention of CAD/CAM resin composite crowns following different bonding protocols. Am. J. Dent. 2018, 31, 97–102. [Google Scholar] [PubMed]
- Eldafrawy, M.; Greimers, L.; Bekaert, S.; Gailly, P.; Lenaerts, C.; Nguyen, J.F.; Sadoun, M.; Mainjot, A. Silane influence on bonding to CAD-CAM composites: An interfacial fracture toughness study. Dent. Mater. 2019, 35, 1279–1290. [Google Scholar] [CrossRef]
- Frankenberger, R.; Hartmann, V.E.; Krech, M.; Kramer, N.; Reich, S.; Braun, A.; Roggendorf, M. Adhesive luting of new CAD/CAM materials. Int. J. Comput. Dent. 2015, 18, 9–20. [Google Scholar]
- Elsaka, S.E. Bond strength of novel CAD/CAM restorative materials to self-adhesive resin cement: The effect of surface treatments. J. Adhes. Dent. 2014, 16, 531–540. [Google Scholar] [CrossRef]
- Blatz, M.B.; Phark, J.H.; Ozer, F.; Mante, F.K.; Saleh, N.; Bergler, M.; Sadan, A. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. Clin. Oral. Investig. 2010, 14, 187–192. [Google Scholar] [CrossRef]
- Cekic-Nagas, I.; Ergun, G.; Egilmez, F.; Vallittu, P.K.; Lassila, L.V. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials. J. Prosthodont. Res. 2016, 60, 265–273. [Google Scholar] [CrossRef]
- Ustun, S.; Ayaz, E.A. Effect of different cement systems and aging on the bond strength of chairside CAD-CAM ceramics. J. Prosthet. Dent. 2020, 125, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, A.M.; Siqueira, F.; Hass, V.; Malaquias, P.; Gutierrez, M.F.; Reis, A.; Perdigao, J.; Loguercio, A. Effect of MDP-containing silane and adhesive used alone or in combination on the long-term bond strength and chemical interaction with lithium disilicate ceramics. J. Adhes. Dent. 2017, 19, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.F.; Perdigao, J.; Malaquias, P.; Cardenas, A.M.; Siqueira, F.; Hass, V.; Reis, A.; Loguercio, A.D. Effect of methacryloyloxydecyl dihydrogen phosphate-containing silane and adhesive used alone or in combination on the bond strength and chemical interaction with zirconia ceramics under thermal aging. Oper. Dent. 2020, 45, 516–527. [Google Scholar] [CrossRef]
- Tekce, N.; Tuncer, S.; Demirci, M. The effect of sandblasting duration on the bond durability of dual-cure adhesive cement to CAD/CAM resin restoratives. J. Adv. Prosthodont. 2018, 10, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Shembish, F.A.; Tong, H.; Kaizer, M.; Janal, M.N.; Thompson, V.P.; Opdam, N.J.; Zhang, Y. Fatigue resistance of CAD/CAM resin composite molar crowns. Dent. Mater. 2016, 32, 499–509. [Google Scholar] [CrossRef] [PubMed]
- El-Damanhoury, H.M.; Gaintantzopoulou, M.D. Self-etching ceramic primer versus hydrofluoric acid etching: Etching efficacy and bonding performance. J. Prosthodont. Res. 2018, 62, 75–83. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Z.; Qian, M.; Zhang, H.; Chen, C.; Xie, H.; Tay, F.R. Chemical affinity of 10-methacryloyloxydecyl dihydrogen phosphate to dental zirconia: Effects of molecular structure and solvents. Dent. Mater. 2017, 33, e415–e427. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Liebermann, A.; Eichberger, M.; Guth, J.F. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J. Mech. Behav. Biomed. Mater. 2015, 55, 1–11. [Google Scholar] [CrossRef]
- Chen, L.; Shen, H.; Suh, B.I. Effect of incorporating BisGMA resin on the bonding properties of silane and zirconia primers. J. Prosthet. Dent. 2013, 110, 402–407. [Google Scholar] [CrossRef]
- Lung, C.Y.; Matinlinna, J.P. Aspects of silane coupling agents and surface conditioning in dentistry: An overview. Dent. Mater. 2012, 28, 467–477. [Google Scholar] [CrossRef]
- Yoshihara, K.; Nagaoka, N.; Sonoda, A.; Maruo, Y.; Makita, Y.; Okihara, T.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Effectiveness and stability of silane coupling agent incorporated in ‘universal’ adhesives. Dent. Mater. 2016, 32, 1218–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshihara, K.; Nagaoka, N.; Maruo, Y.; Nishigawa, G.; Irie, M.; Yoshida, Y.; Van Meerbeek, B. Sandblasting may damage the surface of composite CAD-CAM blocks. Dent. Mater. 2017, 33, e124–e135. [Google Scholar] [CrossRef] [PubMed]
- Maño, E.P.; Algarra, R.M.; Fawzy, A.; Leitune, V.C.B.; Collares, F.M.; Feitosa, V.; Sauro, S. In Vitro Bonding Performance of Modern Self-Adhesive Resin Cements and Conventional Resin-Modified Glass Ionomer Cements to Prosthetic Substrates. Appl. Sci. 2020, 10, 8157. [Google Scholar] [CrossRef]
Trademarks Experimental Groups | Composition | Indication |
---|---|---|
Vita Enamic, Vita Zahnfabrik, Bad Säckingen, Alemanha (VE) | Feldspar ceramics reinforced with aluminum oxide + polymer (UDMA and TEGMA). | Single-sided implant tooth crowns, inlays, onlays and veneers. |
Lava Ultimate 3M Oral Care, St. Paul, MN, USA (LU) | Silicon nanoparticles, zirconia nanoparticles, nanoclusters, silicon union and a resinous matrix. | Permanent unit crowns about implant, facets, inlays and onlays. |
Brava Block FGM, Joinville, SC, Brazil (BR) | 65 to 80% silanized barium glass, Bis EMA, Bis GMA, Dimethylaminobenzoate and camphorquinone. | Inlays, onlays and laminates. |
Hydrofluoric acid 5% (Vita ceramics etch) | 1 mL of acid VITA CERAMICS ETCH contains 0.047 g of hydrofluoric acid. | 1—Apply using a microbrush on the surface of restoration for 60 s; 2—Wash abundantly; 3—Apply jet air. |
Monobond N Ivoclar Vivadent (silane with MDP) | Alcoholic solution of methacrylate silane, ethanol, 10-MDP, and sulfide methacrylate. | 1—Apply a drop with the aid of a microbrush; 2—Let it react for 60 s; 3—Apply air jet strongly. |
Silane Angelus (Silane without MDP) | Methylene, oxygen and oxygen, silicon, ethanol, hydroxyl. | 1—Apply on the surface; 2—Stand by 60 s; 3—Apply jet air. |
Single Bond Universal (SBU) 3M Oral Care | MDP, Dimetacrilate resins, HEMA, VitrebondTM copolymer. Filling particles, ethanol, water, initiators, Silane. | 1—Apply an active layer on the surface; 2—Leave solvent to evaporate for 5 s; 3—Jet air for 5 s; 4—Light cure for 20 s. |
Prime & Bond Elect (PBE) Dentsply Sirona | Mono, di- and trimetacrylate resin, PENTA, diacetone, phosphine organic, stabilizers, ketylamino fluoride, and acetone, water, acetone, catalyst, photoinitiators. | 1—Mix one drop of each vial; 2—Apply a layer over the surface; 3—Allow to evaporate for 20 s; 4—Apply air jet for 5 s; 5—Light cure for 20 s. |
Ambar Universal (AU) FGM | Methacrylic monomers (MDP and UDMA), photoinitiators, co-conspirators and stabilizers, in addition to inert load (nanoparticles of silica) and vehicle (ethanol). | 1—Actively apply two layers of adhesive on the surface; 2—Jet air for 10 s between the layers; 3—Light cure for 20 s. |
Rely X Ultimate 3M Oral Care | Glass powder treated with methyl propanoic silane, hydroxymethyl Ester, reaction products with hydroxy propanediol dimethacrylate and phosphorus oxide, TEGDMA, silane-treated silica, glass borosilicate, sodium persulphate, peroxy-trimethylhexanoate-butyl and monohydrated copper acetate. | 1—Mix the two folders; 2—Apply on the surface; 3—Light cure for 40 s. |
Enforce Dentsply Dentsply Sirona | Base Paste: Glass from Boron, aluminum silicate and Silanized barium, pyrolytic silica Silanized, Bis GMA, BDMA, BHT, Camphorquinone, TEGDMA, Mineral pigments, EDAB. Catalytic Paste: Glass Boron, aluminum silicate and silanized barium, pyrolytic silica silanized, BisGMA, BDMA, BHT, TEGDMA, stains, Benzoyl minerals and peroxide. | 1—Mix the two folders; 2—Apply on the surface; 3—Light cure for 40 s. |
AllCem FGM | Methacrylic monomers (TEGDMA and HEMA); camphorquinone; co-initiatorsand microparticles of barium glass. | 1—Mix the two folders; 2—Apply on the surface; 3—Light cure for 40 s. |
AllCem | ||||
---|---|---|---|---|
Adhesive with MDP and without Silane (AU) | Silane without MDP | Silane with MDP | Average | |
Brava Block (BR) | 21.23 ± 1.5 | 22.15 ± 2.3 | 21.11 ± 2.3 | 21.50 C |
Lava Ultimate (LU) | 24.87 ± 2.0 | 24.88 ± 2.1 | 22.68 ± 1.9 | 24.14 B |
Vita Enamic (VE) | 25.88 ± 3.2 | 28.50 ± 2.7 | 25.89 ± 3.3 | 26.76 A |
Average | 23.99 ab | 25.18 a | 23.23 b |
Rely X Ultimate | ||||
---|---|---|---|---|
Adhesive with Silane and MDP (SBU) | Silane without MDP | Silane with MDP | Average | |
Brava Block (BR) | 19.16 ± 2.3 a | 20.21 ± 2.4 a | 20.05 ± 1.8 a | 19.80 C |
Lava Ultimate (LU) | 21.65 ± 2.2 a | 23.16 ± 1.9 a | 23.26 ± 2.7 a | 22.70 B |
Vita Enamic (VE) | 27.50 ± 3.6 b | 25.9 ± 2.0 b | 30.48 ± 3.2 a | 27.96 A |
Enforce | ||||
---|---|---|---|---|
Adhesive without MDP and Silane (PBE) | Silane without MDP | Silane with MDP | Average | |
Brava Block (BR) | 20.99 ± 1.7 | 20.58 ± 1.8 | 20.33 ± 2.4 | 20.63 C |
Lava Ultimate (LU) | 21.87 ± 1.9 | 24.12 ± 2.2 | 22.16 ± 2.2 | 22.72 B |
Vita Enamic (VE) | 26.99 ± 2.5 | 27.36 ± 3.2 | 25.12 ± 2.8 | 26.49 A |
Average | 23.28 a | 24.02 a | 22.54 a |
Percentage of Chemical Elements (%) | |||||||
---|---|---|---|---|---|---|---|
CAD–CAM Composites | K | Al | Ba | Na | Si | Zr | O |
Brava Block (BR) | 0 | 5.53 | 22.27 | 0 | 30.23 | 0 | 41.96 |
Lava Ultimate (LU) | 0 | 0 | 0 | 0 | 36.57 | 16.11 | 47.32 |
Vita Enamic (VE) | 5.14 | 11.8 | 0 | 5.65 | 29.87 | 0 | 47.54 |
Percentage of Chemical Elements (%) | |||||||
---|---|---|---|---|---|---|---|
CAD–CAM Composites | K | Al | Ba | Na | Si | Zr | O |
Brava Block (BR) | 0 | 5.18 | 24.15 | 0 | 29.56 | 0 | 41.10 |
Lava Ultimate (LU) | 0 | 1.82 | 0 | 0 | 23.15 | 12.71 | 62.31 |
Vita Enamic (VE) | 5.76 | 11.41 | 0 | 4.16 | 30.81 | 0 | 47.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hilgemberg, B.; Siqueira, F.S.F.d.; Cardenas, A.F.M.; Ribeiro, J.L.; Dávila-Sánchez, A.; Sauro, S.; Loguercio, A.D.; Arrais, C.A.G. Effect of Bonding Protocols on the Performance of Luting Agents Applied to CAD–CAM Composites. Materials 2022, 15, 6004. https://doi.org/10.3390/ma15176004
Hilgemberg B, Siqueira FSFd, Cardenas AFM, Ribeiro JL, Dávila-Sánchez A, Sauro S, Loguercio AD, Arrais CAG. Effect of Bonding Protocols on the Performance of Luting Agents Applied to CAD–CAM Composites. Materials. 2022; 15(17):6004. https://doi.org/10.3390/ma15176004
Chicago/Turabian StyleHilgemberg, Bruna, Fabiana Suelen Figuerêdo de Siqueira, Andres Felipe Millan Cardenas, Josiane Loch Ribeiro, Andrés Dávila-Sánchez, Salvatore Sauro, Alessandro Dourado Loguercio, and Cesar Augusto Galvao Arrais. 2022. "Effect of Bonding Protocols on the Performance of Luting Agents Applied to CAD–CAM Composites" Materials 15, no. 17: 6004. https://doi.org/10.3390/ma15176004
APA StyleHilgemberg, B., Siqueira, F. S. F. d., Cardenas, A. F. M., Ribeiro, J. L., Dávila-Sánchez, A., Sauro, S., Loguercio, A. D., & Arrais, C. A. G. (2022). Effect of Bonding Protocols on the Performance of Luting Agents Applied to CAD–CAM Composites. Materials, 15(17), 6004. https://doi.org/10.3390/ma15176004