Selected Properties of Veneered Lightweight Particleboards with Expanded Polystyrene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Manufacturing of Lightweight Particleboards
2.3. Particleboards Testing
2.4. Measuring the Duration of Mat Heating
2.5. Statistical Analysis
3. Results
3.1. Heating of the Mat
3.2. The Effect of Density and EPS Content on the Properties of Boards
3.3. The Effect of Pressing Temperature on the Properties of Lightweight Particleboards
3.4. The Effect of Veneering on the Properties of Boards
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lyutyy, P.; Bekhta, P.; Ortynska, G. Lightweight flat pressed wood plastic composites: Possibility of manufacture and properties. Drv. Ind. 2018, 69, 55–62. [Google Scholar] [CrossRef]
- Michanickl, A. Development of a new light wood-based panel. In Proceedings of the 5th European Wood-Based Panel Symposium, Hannover, Germany, 4–6 October 2006; p. XX. [Google Scholar]
- Shalbafan, A.; Tackmann, O.; Welling, J. Using of expandable fillers to produce low density particleboard. Eur. J. Wood Wood Prod. 2016, 74, 15–22. [Google Scholar] [CrossRef]
- Khojasteh-Khosro, S.; Shalbafan, A.; Thoemen, H. Preferences of furniture manufacturers for using lightweight wood-based panels as eco-friendly products. Eur. J. Wood Wood Prod. 2020, 78, 593–603. [Google Scholar] [CrossRef]
- Suchsland, O.; Woodson, G.E. Fiberboard Manufacturing Practices in the United States; Agric. Handb. 640.; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1986; p. 263.
- CEN/TS 16368; Lightweight Particleboards—Specifications. European Committee for Standardization: Brussels, Belgium, 2014.
- Boruszewski, P.; Borysiuk, P.; Mamiński, M.; Czechowska, J. Mat compression measurements during low-density particleboard manufacturing. BioResources 2016, 11, 6909–6919. [Google Scholar] [CrossRef]
- Kalaycioglu, H.; Deniz, I.; Hiziroglu, S. Some of the properties of particleboard made from paulownia. J. Wood Sci. 2005, 51, 410–414. [Google Scholar] [CrossRef]
- Balducci, F.; Harper, C.; Meinlschmidt, P.; Dix, B.; Sanasi, A. Development of innovative particleboard panels. Drv. Ind. 2008, 59, 131–136. [Google Scholar]
- Meinlschmidt, P.; Schrip, A.; Dix, B.; Thole, V.; Brinker, N. Agriculture residues with light parenchyma cells and expandable filler materials for the production of lightweight particleboards. In Proceedings of the International Panel Products Symposium, Espoo, Finland, 24–26 September 2008; pp. 179–188. [Google Scholar]
- Dziurka, D.; Mirski, R. Lightweight boards from wood and rape straw particles. Drewno 2013, 56, 19–31. [Google Scholar]
- Wen, M.Y.; Park, H.J.; Oh, S.W.; Kang, C.W.; Hwang, J.W.; Matsumura, J. Properties of MDF panels manufactured with foam-type UF resin adhesive. J. Fac. Agric. Kyushu Univ. 2014, 59, 133–136. [Google Scholar] [CrossRef]
- Kollman, F.F.P.; Kuenzi, E.W.; Stamm, A.J. Principles of Wood Science and Technology. II Wood Based Materials; Springer: Berlin/Heidelberg, Germany, 1975; 703p. [Google Scholar] [CrossRef]
- Khakzad, J.; Ali Shalbafan, A.; Kazemi-Najafi, S. Lightweight tubular fiberboard: Effect of hole diameters and number on panel properties. Maderas-Cienc. Tecnol. 2020, 22, 311–324. [Google Scholar] [CrossRef]
- Shalbafan, A.; Welling, J.; Luedtke, J. Effect of processing parameters on mechanical properties of lightweight foam core sandwich panels. Wood Mater. Sci. Eng. 2012, 7, 69–75. [Google Scholar] [CrossRef]
- Dziurka, D.; Mirski, R.; Dukarska, D.; Derkowski, A. Possibility of using the expanded polystyrene and rape straw to the manufacture of lightweight particleboards. Maderas-Cienc. Tecnol. 2015, 17, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, S.; Martins, J.; Magalhães, F.D.; Carvalho, L. Lightweight Wood Composites: Challenges, Production and Performance. In Lignocellulosic Composite Materials, 1st ed.; Kalia, S., Ed.; Springer Series on Polymer and Composite, Materials; Springer International Publishing: Cham, Switzerland, 2018; pp. 293–322. [Google Scholar] [CrossRef]
- Itu, R.B.; Boantă, M.; Stepanescu, S.; Petila, E.M. Recycling the polystyrene left from the protection wraps. Ann. West Univ. Timisoara Ser. Chem. 2007, 16, 141–146. [Google Scholar]
- Doroudiani, S.; Kortschot, M.T. Expanded Wood Fiber Polystyrene Composite: Processing–Structure–Mechanical Properties Relationships. J. Thermoplast. Compos. Mater. 2004, 17, 13–30. [Google Scholar] [CrossRef]
- Luo, S.; Gao, L.; Guo, W. Effect of expanded polystyrene content and press temperature on the properties of low-density wood particleboard. Maderas-Cienc. Tecnol. 2020, 22, 549–558. [Google Scholar] [CrossRef]
- Khojasteh-Khosro, S.; Shalbafan, A.; Thoemen, H. Development of ultra-light foam-core fibreboard for furniture application. Eur. J. Wood Wood Prod. 2021, 79, 1435–1449. [Google Scholar] [CrossRef]
- Benthien, J.T.; Ohlmeyer, M. Influence of face-to-core layer ratio and core layer resin content on the properties of density-decreased particleboards. Eur. J. Wood Wood Prod. 2017, 75, 55–62. [Google Scholar] [CrossRef]
- Benthien, J.T.; Ohlmeyer, M. Enhancement of low-density particleboard properties by core layer particle orientation. Eur. J. Wood Wood Prod. 2018, 76, 1087–1091. [Google Scholar] [CrossRef]
- Déneši, M.; Joščák, T.; Joščák, M.; Bodnár, F.; Teischinger, A. One press cycle production of fiberboard with unsymmetrically distributed densities. Eur. J. Wood Wood Prod. 2012, 70, 471–477. [Google Scholar] [CrossRef]
- Monteiro, S.; Martins, J.; Magalhães, F.D.; Carvalho, L. Low density wood particleboards bonded with starch foam—Study of production process conditions. Materials 2019, 12, 1975. [Google Scholar] [CrossRef] [PubMed]
- Shalbafan, A.; Welling, J.; Luedtke, J. Effect of processing parameters on physical and structural properties of lightweight foam core sandwich panels. Wood Mater. Sci. Eng. 2013, 8, 1–12. [Google Scholar] [CrossRef]
- Norvydas, V.; Minelga, D. Strength and stiffness properties of furniture panels covered with different coatings. Mater. Sci. 2006, 12, 328–332. [Google Scholar]
- Grigoriou, A. Formaldehyde release from the edges and faces of various wood based panels. Holz Roh Werkst. 1987, 45, 63–67. [Google Scholar] [CrossRef]
- Jivkov, V.; Simeonova, R.; Kamenov, P.; Marinova, A. Strength properties of new lightweight panels for furniture and interiors. In Proceedings of the 23rd International Scientific Conference, Wood Is Good—With Knowledge and Technology to a Com-petitive Forestry and Wood Technology Sector, Zagreb, Croatia, 12 October 2012; pp. 49–58. [Google Scholar]
- Kawai, S.; Sasaki, H.; Nakaji, M.; Makiyama, S.; Morita, S. Physical Properties of Low-density Particleboard. Wood Res. Bull. Wood Res. Inst. Kyoto Univ. 1986, 72, 27–36. [Google Scholar]
- Srivaro, S.; Chaowana, P.; Matan, P.; Kyokong, B. Lightweight sandwich panel from oil palm wood core and rubberwood veneer face. J. Trop. For. Sci. 2014, 26, 50–57. [Google Scholar]
- Kawasaki, T.; Zhang, M.; Kawai, S. Sandwich panel of veneer-overlaid low-density fiberboard. J. Wood Sci. 1999, 45, 291–298. [Google Scholar] [CrossRef]
- Bekhta, P.; Lyutyy, P.; Ortynska, G. Effects of different kinds of coating materials on flat pressed WPC panels. Drv. Ind. 2016, 67, 113–118. [Google Scholar] [CrossRef]
- Bekhta, P.; Lyutyy, P.; Ortynska, G. Properties of veneered flat pressed wood plastic composites by one-step process pressing. J. Polym. Environ. 2017, 25, 1288–1295. [Google Scholar] [CrossRef]
- EN 323; Wood-Based Panels—Determination of Density. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 310; Wood-Based Panels—Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 319; Particleboards and Fibreboards—Determination of Tensile Strength Perpendicular to the Plane of the Board. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 317; Particleboards and Fibreboards. Determination of Swelling in Thickness after Immersion in Water. European Committee for Standardization: Brussels, Belgium, 1993.
- Shalbafan, A.; Jafarnezhad, S.; Luedtke, J. Evaluation of low density hybrid panels using expandable granules: Effect of granules diameter and content. Eur. J. Wood Wood Prod. 2018, 76, 1505–1514. [Google Scholar] [CrossRef]
- EN 312; Particleboards—Specifications. European Committee for Standardization: Brussels, Belgium, 2010.
- Niska, K.O.; Sain, M. Wood-Polymer Composites, 1st ed.; Woodhead Publishing Limited: Cambridge, UK, 2008; p. 384. [Google Scholar]
- Horvath, J.S. Expanded polystyrene (EPS) geofoam: An introduction to material behavior. Geotext. Geomembr. 1994, 13, 263–280. [Google Scholar] [CrossRef]
- Follrich, J.; Muller, U.; Gindl, W. Effects of thermal modification on the adhesion between spruce wood (Picea abies Karst.) and a thermoplastic polymer. Holz Roh Werkst. 2006, 64, 373–376. [Google Scholar] [CrossRef]
- Maloney, T.M. Modern Particleboard and Dry-Process Fiberboard Manufacturing; Miller Freeman Publications: San Francisco, CA, USA, 1993; p. 672. [Google Scholar]
- Chow, P.; Janowiak, J.J.; Price, E.W. The Internal Bond and Shear Strength of Hardwood Veneered Particleboard Composites. Wood Fiber Sci. 1996, 18, 99–106. [Google Scholar]
Code | Density of Boards (kg/m3) | EPS Content (%) |
---|---|---|
1 | 350 | 0 |
2 | 450 | 0 |
3 | 550 | 0 |
4 | 350 | 4 |
5 | 450 | 4 |
6 | 550 | 4 |
7 | 350 | 7 |
8 | 450 | 7 |
9 | 550 | 7 |
10 | 350 | 10 |
11 | 450 | 10 |
12 | 550 | 10 |
Content of EPS (%) | Time to Reach 100 °C (s) | ||
---|---|---|---|
Density of Boards (kg/m3) | |||
350 | 450 | 550 | |
0 | 100 | 93 | 90 |
4 | 93 | 78 | 63 |
7 | 88 | 83 | 60 |
10 | 98 | 93 | 70 |
Property | Density of Boards (kg/m3) | Requirements According to CEN/TS 16368 for Board Types | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
350 | 450 | 550 | |||||||||
Content of EPS (%) | |||||||||||
4 | 7 | 10 | 4 | 7 | 10 | 4 | 7 | 10 | LP1 | LP2 | |
Bending strength (MPa) | 10.3 | 9.2 | 5.8 | 20.6 | 18.8 | 6.0 | 24.4 | 30.5 | 7.9 | ≥3.5 | ≥7.0 |
Modulus of elasticity (MPa) | 2405 | 2670 | 1097 | 3289 | 3519 | 1606 | 3983 | 4540 | 2262 | ≥500 | ≥950 |
Internal bond (MPa) | 0.19 | 0.12 | 0.12 | 0.24 | 0.26 | 0.15 | 0.31 | 0.31 | 0.34 | ≥0.24 | ≥0.35 |
Thickness swelling 24 h (%) | 10.2 | 9.6 | 8.9 | 11.5 | 11.9 | 12.2 | 13.4 | 13.3 | 12.9 | is not regulated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekhta, P.; Kozak, R.; Sedliačik, J.; Gryc, V.; Sebera, V.; Bajzová, L.; Iždinský, J. Selected Properties of Veneered Lightweight Particleboards with Expanded Polystyrene. Materials 2022, 15, 6474. https://doi.org/10.3390/ma15186474
Bekhta P, Kozak R, Sedliačik J, Gryc V, Sebera V, Bajzová L, Iždinský J. Selected Properties of Veneered Lightweight Particleboards with Expanded Polystyrene. Materials. 2022; 15(18):6474. https://doi.org/10.3390/ma15186474
Chicago/Turabian StyleBekhta, Pavlo, Ruslan Kozak, Ján Sedliačik, Vladimír Gryc, Václav Sebera, Liubov Bajzová, and Ján Iždinský. 2022. "Selected Properties of Veneered Lightweight Particleboards with Expanded Polystyrene" Materials 15, no. 18: 6474. https://doi.org/10.3390/ma15186474