Influence of Sintering on Thermal, Mechanical and Technological Properties of Glass Foams Produced from Agro-Industrial Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Sample Preparation
2.3. Sample Characterization
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de-Prado-Gil, J.; Palencia, C.; Jagadesh, P.; Martínez-García, R. A Study on the Prediction of Compressive Strength of Self-Compacting Recycled Aggregate Concrete Utilizing Novel Computational Approaches. Materials 2022, 15, 5232. [Google Scholar] [CrossRef] [PubMed]
- Quispe, I.; Navia, R.; Kahhat, R. Life Cycle Assessment of Rice Husk as an Energy Source. A Peruvian Case Study. J. Clean. Prod. 2019, 209, 1235–1244. [Google Scholar] [CrossRef]
- Stegmann, P.; Londo, M.; Junginger, M. The Circular Bioeconomy: Its Elements and Role in European Bioeconomy Clusters. Resour. Conserv. Recycl. X 2020, 6, 100029. [Google Scholar] [CrossRef]
- Guo, W.; Cheng, J.; Liu, S.; Feng, L.; Su, Y.; Li, Y. A Novel Porous Nickel-Foam Filled CO2 Absorptive Photobioreactor System to Promote CO2 Conversion by Microalgal Biomass. Sci. Total Environ. 2020, 713, 136593. [Google Scholar] [CrossRef] [PubMed]
- Stępień, J.; Maciejewski, K. Using Reclaimed Cement Concrete in Pavement Base Mixes with Foamed Bitumen Produced in Cold Recycling Technology. Materials 2022, 15, 5175. [Google Scholar] [CrossRef]
- Coelho, P.M.; Corona, B.; ten Klooster, R.; Worrell, E. Sustainability of Reusable Packaging–Current Situation and Trends. Resour. Conserv. Recycl. X 2020, 6, 100037. [Google Scholar] [CrossRef]
- Kirkelund, G.M.; Skevi, L.; Ottosen, L.M. Electrodialytically Treated MSWI Fly Ash Use in Clay Bricks. Constr. Build. Mater. 2020, 254, 119286. [Google Scholar] [CrossRef]
- Colapicchioni, V.; Mosca, S.; Guerriero, E.; Cerasa, M.; Khalid, A.; Perilli, M.; Rotatori, M. Environmental Impact of Co-Combustion of Polyethylene Wastes in a Rice Husks Fueled Plant: Evaluation of Organic Micropollutants and PM Emissions. Sci. Total Environ. 2020, 716, 135354. [Google Scholar] [CrossRef]
- Ramos, F.J.H.T.V.; Reis, R.H.M.; Grafova, I.; Grafov, A.; Monteiro, S.N. Eco-Friendly Recycled Polypropylene Matrix Composites Incorporated with Geopolymer Concrete Waste Particles. J. Mater. Res. Technol. 2020, 9, 3084–3090. [Google Scholar] [CrossRef]
- Biswas, K.; Shrestha, S.S.; Bhandari, M.S.; Desjarlais, A.O. Insulation Materials for Commercial Buildings in North America: An Assessment of Lifetime Energy and Environmental Impacts. Energy Build. 2016, 112, 256–269. [Google Scholar] [CrossRef] [Green Version]
- da Silva Fernandes, F.A.; Arcaro, S.; Tochtrop Junior, E.F.; Valdés Serra, J.C.; Bergmann, C.P. Glass Foams Produced from Soda-Lime Glass Waste and Rice Husk Ash Applied as Partial Substitutes for Concrete Aggregates. Process Saf. Environ. Prot. 2019, 128, 77–84. [Google Scholar] [CrossRef]
- de Moraes, E.G.; Sangiacomo, L.; Stochero, P.N.; Arcaro, S.; Barbosa, R.L.; Lenzi, A.; Siligardi, C.; Novaes de Oliveira, A.P. Innovative Thermal and Acoustic Insulation Foam by Using Recycled Ceramic Shell and Expandable Styrofoam (EPS) Wastes. Waste Manag. 2019, 89, 336–344. [Google Scholar] [CrossRef]
- Sedlačík, M.; Nguyen, M.; Opravil, T.; Sokolář, R. Preparation and Characterization of Glass-Ceramic Foam from Clay-Rich Waste Diatomaceous Earth. Materials 2022, 15, 1384. [Google Scholar] [CrossRef] [PubMed]
- Ventrella, A.; Smeacetto, F.; Salvo, M.; Ferraris, M.; Avalle, M. A New Glass to Join Foam Glass Components. J. Mater. Eng. Perform. 2010, 19, 1244–1247. [Google Scholar] [CrossRef]
- Hassan, H.S.; Abdel-Gawwad, H.A.; García, S.R.V.; Israde-Alcántara, I. Fabrication and Characterization of Thermally-Insulating Coconut Ash-Based Geopolymer Foam. Waste Manag. 2018, 80, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Pereira da Costa, F.; Rodrigues da Silva Morais, C.; Rodrigues, A.M. Sustainable Glass-Ceramic Foams Manufactured from Waste Glass Bottles and Bentonite. Ceram. Int. 2020, 46, 17957–17961. [Google Scholar] [CrossRef]
- Sooksaen, P.; Sudyod, N.; Thongtha, N.; Simsomboonphol, R. Fabrication of Lightweight Foam Glasses for Thermal Insulation Applications. Mater. Today Proc. 2019, 17, 1823–1830. [Google Scholar] [CrossRef]
- Saparuddin, D.I.; Noor Hisham, N.A.; Ab Aziz, S.; Matori, K.A.; Honda, S.; Iwamoto, Y.; Mohd Zaid, M.H. Effect of Sintering Temperature on the Crystal Growth, Microstructure and Mechanical Strength of Foam Glass-Ceramic from Waste Materials. J. Mater. Res. Technol. 2020, 9, 5640–5647. [Google Scholar] [CrossRef]
- Ji, R.; Zheng, Y.; Zou, Z.; Chen, Z.; Wei, S.; Jin, X.; Zhang, M. Utilization of Mineral Wool Waste and Waste Glass for Synthesis of Foam Glass at Low Temperature. Constr. Build. Mater. 2019, 215, 623–632. [Google Scholar] [CrossRef]
- de Cordeiro, L.N.P.; Masuero, Â.B.; Dal Molin, D.C.C. Análise Do Potencial Pozolânico Da Cinza de Casca de Arroz (Cca) Através Da Técnica de Refinamento de Rietveld. Rev. Mater. 2014, 19, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Villanova, D.L.; Bergmann, C.P. Sinterability Study of Ceramic Bodies Made from a Mixture of Mineral Coal Bottom Ash and Soda-Lime Glass Cullet. Waste Manag. Res. 2007, 25, 77–82. [Google Scholar] [CrossRef] [PubMed]
- König, J.; Petersen, R.R.; Yue, Y. Influence of the Glass–Calcium Carbonate Mixture’s Characteristics on the Foaming Process and the Properties of the Foam Glass. J. Eur. Ceram. Soc. 2014, 34, 1591–1598. [Google Scholar] [CrossRef]
- König, J.; Petersen, R.R.; Iversen, N.; Yue, Y. Suppressing the Effect of Cullet Composition on the Formation and Properties of Foamed Glass. Ceram. Int. 2018, 44, 11143–11150. [Google Scholar] [CrossRef]
- Chandni, T.J.; Anand, K.B. Utilization of Recycled Waste as Filler in Foam Concrete. J. Build. Eng. 2018, 19, 154–160. [Google Scholar] [CrossRef]
- Hisham, N.A.N.; Zaid, M.H.M.; Saparuddin, D.I.; Aziz, S.H.A.; Muhammad, F.D.; Honda, S.; Iwamoto, Y. Crystal Growth and Mechanical Properties of Porous Glass-Ceramics Derived from Waste Soda-Lime-Silica Glass and Clam Shells. J. Mater. Res. Technol. 2020, 9, 9295–9298. [Google Scholar] [CrossRef]
- Rashad, A.M. Recycled Waste Glass as Fine Aggregate Replacement in Cementitious Materials Based on Portland Cement. Constr. Build. Mater. 2014, 72, 340–357. [Google Scholar] [CrossRef]
- Pokorny, A.; Vicenzi, J.; Pérez Bergmann, C. Influence of Heating Rate on the Microstructure of Glass Foams. Waste Manag. Res. 2011, 29, 172–179. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of Silver Nanoparticles: Chemical, Physical and Biological Methods. Res. Pharm. Sci. 2014, 9, 385–406. [Google Scholar] [CrossRef]
- Olutoge, F.A.; Adesina, P.A. Effects of Rice Husk Ash Prepared from Charcoal-Powered Incinerator on the Strength and Durability Properties of Concrete. Constr. Build. Mater. 2019, 196, 386–394. [Google Scholar] [CrossRef]
- Zhao, W.; Ji, C.; Sun, Q.; Gu, Q. Preparation and Microstructure of Alkali-Activated Rice Husk Ash-Granulated Blast Furnace Slag Tailing Composite Cemented Paste Backfill. Materials 2022, 15, 4397. [Google Scholar] [CrossRef]
- Pode, R. Potential Applications of Rice Husk Ash Waste from Rice Husk Biomass Power Plant. Renew. Sustain. Energy Rev. 2016, 53, 1468–1485. [Google Scholar] [CrossRef]
- Sobrosa, F.Z.; Stochero, N.P.; Marangon, E.; Tier, M.D. Development of Refractory Ceramics from Residual Silica Derived from Rice Husk Ash. Ceram. Int. 2017, 43, 7142–7146. [Google Scholar] [CrossRef]
- Gonçalves, M.R.F.; Bergmann, C.P. Thermal Insulators Made with Rice Husk Ashes: Production and Correlation between Properties and Microstructure. Constr. Build. Mater. 2007, 21, 2059–2065. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Felipe-Sesé, M.A.; López-Pérez, J.A.; Infantes-Molina, A. Characterization and Evaluation of Rice Husk Ash and Wood Ash in Sustainable Clay Matrix Bricks. Ceram. Int. 2017, 43, 463–475. [Google Scholar] [CrossRef]
- Teixeira, L.B.; Fernandes, V.K.; Maia, B.G.O.; Arcaro, S.; de Oliveira, A.P.N. Vitrocrystalline Foams Produced from Glass and Oyster Shell Wastes. Ceram. Int. 2017, 43, 6730–6737. [Google Scholar] [CrossRef]
- Francis, A.A.; Abdel Rahman, M.K. Formation of Cellular-Structure Material From Automotive Glass Waste and Sawdust. Mater. Manuf. Process. 2013, 28, 616–620. [Google Scholar] [CrossRef]
- König, J.; Petersen, R.R.; Yue, Y. Fabrication of Highly Insulating Foam Glass Made from CRT Panel Glass. Ceram. Int. 2015, 41, 9793–9800. [Google Scholar] [CrossRef]
- Axinte, S.M.; Fiti, A. Foam Glass Produced by Microwave Heating Technique. Rom. Chem. Eng. Soc. 2017, 4, 98–109. [Google Scholar]
- Umamaheswaran, K.; Batra, V.S. Physico-Chemical Characterisation of Indian Biomass Ashes. Fuel 2008, 87, 628–638. [Google Scholar] [CrossRef]
- Della, V.P.; Hotza, D.; Junkes, J.A.; De Oliveira, A.P.N. Estudo Comparativo Entre Sílica Obtida Por Lixívia Ácida Da Casca de Arroz e Sílica Obtida Por Tratamento Térmico Da Cinza de Casca de Arroz. Quim. Nova 2006, 29, 1175–1179. [Google Scholar] [CrossRef]
- Fernandes, H.R.; Ferreira, D.D.; Andreola, F.; Lancellotti, I.; Barbieri, L.; Ferreira, J.M.F. Environmental Friendly Management of CRT Glass by Foaming with Waste Egg Shells, Calcite or Dolomite. Ceram. Int. 2014, 40, 13371–13379. [Google Scholar] [CrossRef]
- Colle Nascimento, G.; Dominguini, L.; Maria Muneron Mello, J.; Dal Magro, J.; Gracher Riella, H.; Antônio Fiori, M. Physical and Chemical Characterization of Husk Ash Rice Originating in the Thermoelectric Process in South of Santa Catarina—Brazil. Ciência Nat. 2015, 37, 634–640. [Google Scholar]
- Hu, A.; Li, M.; Mao, D. Controlled Crystallization of Glass–Ceramics with Two Nucleating Agents. Mater. Charact. 2009, 60, 1529–1533. [Google Scholar] [CrossRef]
- Vieira, C.M.F.; Morais, A.S.C.; Monteiro, S.N.; Delaqua, G.C.G. Teste Industrial de Cerâmica Vermelha Incorporada Com Resíduo de Vidro de Lâmpada Fluorescente. Cerâmica 2016, 62, 376–385. [Google Scholar] [CrossRef]
- Karamberi, A.; Orkopoulos, K.; Moutsatsou, A. Synthesis of Glass-Ceramics Using Glass Cullet and Vitrified Industrial by-Products. J. Eur. Ceram. Soc. 2007, 27, 629–636. [Google Scholar] [CrossRef]
- Petersen, R.R.; König, J.; Yue, Y. The Viscosity Window of the Silicate Glass Foam Production. J. Non. Cryst. Solids 2017, 456, 49–54. [Google Scholar] [CrossRef]
- AKAI, T.; FUKUMI, K.; YAMASHITA, M. Formation of Pale Foam Glass from Colored Glass Cullet. J. Ceram. Soc. Jpn. 2020, 128, 153–157. [Google Scholar] [CrossRef]
- Jongpradist, P.; Homtragoon, W.; Sukkarak, R.; Kongkitkul, W.; Jamsawang, P. Efficiency of Rice Husk Ash as Cementitious Material in High-Strength Cement-Admixed Clay. Adv. Civ. Eng. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- James, J.; Subba Rao, M. Reactivity of Rice Husk Ash. Cem. Concr. Res. 1986, 16, 296–302. [Google Scholar] [CrossRef]
- Tulyaganov, D.U.; Fernandes, H.R.; Agathopoulos, S.; Ferreira, J.M.F. Preparation and Characterization of High Compressive Strength Foams from Sheet Glass. J. Porous Mater. 2006, 13, 133–139. [Google Scholar] [CrossRef]
- Scheffler, M.; Colombo, P. Front Matter. In Cellular Ceramics; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. I–XXV. [Google Scholar]
- Lamri, Y.; Benzerga, R.; Ayadi, A.; Le Gendre, L.; El-Assal, A. Glass Foam Composites Based on Tire’s Waste for Microwave Absorption Application. J. Non. Cryst. Solids 2020, 537, 120017. [Google Scholar] [CrossRef]
- Zhang, Q.; He, F.; Shu, H.; Qiao, Y.; Mei, S.; Jin, M.; Xie, J. Preparation of High Strength Glass Ceramic Foams from Waste Cathode Ray Tube and Germanium Tailings. Constr. Build. Mater. 2016, 111, 105–110. [Google Scholar] [CrossRef]
- Low, N.M.P. Formation of Cellular-Structure Glass with Carbonate Compounds and Natural Mica Powders. J. Mater. Sci. 1981, 16, 800–808. [Google Scholar] [CrossRef]
- Samal, P.; Newkirk, J. Fundamentals of Sintering—Ceramics and Glasses Handbook; German, R.M., Ed.; 1983; Volume 4, pp. 260–269. [Google Scholar] [CrossRef]
- Fernandes, H.R.; Tulyaganov, D.U.; Ferreira, J.M.F. Preparation and Characterization of Foams from Sheet Glass and Fly Ash Using Carbonates as Foaming Agents. Ceram. Int. 2009, 35, 229–235. [Google Scholar] [CrossRef]
- Orlova, L.A. Problems of Foam Glass Production. Glas. Ceram. 2003, 60, 313–314. [Google Scholar]
- Hammel, E.C.; Ighodaro, O.L.-R.; Okoli, O.I. Processing and Properties of Advanced Porous Ceramics: An Application Based Review. Ceram. Int. 2014, 40, 15351–15370. [Google Scholar] [CrossRef]
Material | Composition * | ||||||
---|---|---|---|---|---|---|---|
SiO2 | CaO | Na2O | Al2O3 | K2O | Fe2O3 | P2O5 | |
Glass | 72.23 | 21.11 | 12.62 | 1.47 | 0.89 | 0.78 | – |
RHA | 89.47 | 2.68 | 1.61 | 0.97 | 2.68 | 0.33 | 0.97 |
CaCO3 | 0.41 | 97.79 | – | 0.07 | – | 0.15 | 1.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Fernandes, F.A.; de Oliveira Costa, D.d.S.; Rossignolo, J.A. Influence of Sintering on Thermal, Mechanical and Technological Properties of Glass Foams Produced from Agro-Industrial Residues. Materials 2022, 15, 6669. https://doi.org/10.3390/ma15196669
da Silva Fernandes FA, de Oliveira Costa DdS, Rossignolo JA. Influence of Sintering on Thermal, Mechanical and Technological Properties of Glass Foams Produced from Agro-Industrial Residues. Materials. 2022; 15(19):6669. https://doi.org/10.3390/ma15196669
Chicago/Turabian Styleda Silva Fernandes, Fernando Antonio, Dayriane do Socorro de Oliveira Costa, and João Adriano Rossignolo. 2022. "Influence of Sintering on Thermal, Mechanical and Technological Properties of Glass Foams Produced from Agro-Industrial Residues" Materials 15, no. 19: 6669. https://doi.org/10.3390/ma15196669
APA Styleda Silva Fernandes, F. A., de Oliveira Costa, D. d. S., & Rossignolo, J. A. (2022). Influence of Sintering on Thermal, Mechanical and Technological Properties of Glass Foams Produced from Agro-Industrial Residues. Materials, 15(19), 6669. https://doi.org/10.3390/ma15196669