Effect of Two-Stage Cooling on the Microstructure and Tribological Properties of Steel–Copper Bimetals
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Material and Characterizations
2.2. Test Method
3. Results and Discussion
3.1. Friction and Wear Properties
3.2. Microstructure of Copper Layers
3.3. Analysis of Wear Mechanism of Copper Layer
4. Conclusions
- (1)
- The bimetal copper layer friction and wear parameters are 250 N, speed is 1500 r/min (3.86 m/s), solidification temperature is 400–900 °C, and the friction coefficient is 0.06–0.1, reaching the lowest point of 0.06 at 700 °C;
- (2)
- As the solidification temperature decreases, the growth of primary and secondary dendrites gradually tends to balance at 700 °C, which is lower than this temperature, and the primary dendrite arms gradually grow up. The uniform dendrite distribution makes the Pb distribution uniform, which is beneficial to the friction performance;
- (3)
- The low melting point eutectoid phase (α + δ + Cu3P) is distributed around α-Cu, forming a peritectic structure coexisting with Pb. Wearing the process, Pb forms a self-lubricating film uniformly distributed on the surface of α-Cu, and Cu3P and δ phases are distributed in the wear mark to increase α-Cu wear resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gladkovsky, S.V.; Kuteneva, S.V.; Sergeev, S.N. Microstructure and mechanical properties of sandwich copper/steel composites produced by explosive welding. Mater. Charact. 2019, 154, 294–303. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, K.; Ma, W.; Min, L. Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture. Mater. Des. 2018, 155, 77–85. [Google Scholar] [CrossRef]
- Hajjari, E.; Divandari, M.; Razavi, S.H.; Emami, S.M.; Homma, T.; Kamado, S. Dissimilar joining of Al/Mg light metals by compound casting process. J. Mater. Sci. 2011, 46, 6491–6499. [Google Scholar] [CrossRef]
- Parveez, B.; Wani, M.F. Tribological behaviour of nano-zirconia reinforced iron-based self-lubricating composites for bearing applications. Tribol. Int. 2021, 159, 106969. [Google Scholar] [CrossRef]
- Hammes, G.; Schroeder, R.; Binder, C.; Klein, A.N.; de Mello, J.D.B. Effect of double pressing/double sintering on the sliding wear of self-lubricating sintered composites. Tribol. Int. 2014, 70, 119–127. [Google Scholar] [CrossRef]
- Equey, S.; Houriet, A.; Mischler, S. Wear and frictional mechanisms of copper-based bearing alloys. Wear 2011, 273, 9–16. [Google Scholar] [CrossRef]
- Robbiola, L.; Blengino, J.-M.; Fiaud, C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys. Corros. Sci. 1998, 40, 2083–2111. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, Y.; Zhang, M.; Liu, J.; Yang, A.; Chen, L.; Yang, Q.; Lou, D.; Liu, D. Fabrication of carbon nanotubes/Cu composites with orthotropic mechanical and tribological properties. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2021, 804, 140788. [Google Scholar] [CrossRef]
- Zhou, H.; Yao, P.; Gong, T.; Xiao, Y.; Zhang, Z.; Zhao, L.; Fan, K.; Deng, M. Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites. Tribol. Int. 2019, 138, 380–391. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Wu, P.; Cao, J.; Shijia, C.; Wei, D.; Qu, X. Effect of carbon fiber on the braking performance of copper-based brake pad under continuous high-energy braking conditions. Wear 2020, 458–459, 203408. [Google Scholar] [CrossRef]
- Song, D.; Wang, T.; Jiang, S.; Zhang, L. Microstructure and Mechanical Properties of Copper-steel Laminated and Sandwich Joints Prepared by Electron Beam Welding. J. Mater. Eng. Perform. 2020, 29, 4251–4259. [Google Scholar] [CrossRef]
- Zhang, H.; Jiao, K.X.; Zhang, J.L.; Liu, J. Comparisons of the microstructures and micro-mechanical properties of copper/steel explosive-bonded wave interfaces. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 2019, 756, 430–441. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Fu, Y.; Jie, J.; Lu, Y.; Guo, Q.; Wang, T.; Li, T. Microstructure and Fabrication of Cu-Pb-Sn/Q235 Laminated Composite by Semi-Solid Rolling. Metals 2018, 8, 722. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Kang, Y.; Wang, M.; Xu, H.; Jia, H. Atomic diffusion behavior and diffusion mechanism in Fe-Cu bimetal casting process studied by molecular dynamics simulation and experiment. Mater. Res. Express 2020, 7, 096519. [Google Scholar] [CrossRef]
- Shaik, M.A.; Golla, B.R. Development of highly wear resistant Cu—Al alloys processed via powder metallurgy. Tribol. Int. 2019, 136, 127–139. [Google Scholar] [CrossRef]
- Sam, M.; Radhika, N. Development of functionally graded Cu-Sn-Ni/Al2O3 composite for bearing applications and investigation of its mechanical and wear behavior. Part. Sci. Technol. 2019, 37, 220–231. [Google Scholar] [CrossRef]
- Radhika, N.; Teja, K.; Rahul, K.; Shivashankar, A. Fabrication of Cu-Sn-Ni /SiC FGM for Automotive Applications: Investigation of its Mechanical and Tribological Properties. Silicon 2018, 10, 1705–1716. [Google Scholar] [CrossRef]
- Liu, J.; Yang, S.; Xia, W.; Jiang, X.; Gui, C. Microstructure and wear resistance performance of Cu-Ni-Mn alloy based hardfacing coatings reinforced by WC particles. J. Alloys Compd. 2016, 654, 63–70. [Google Scholar] [CrossRef]
- Jha, P.; Gautam, R.K.; Tyagi, R. Friction and wear behavior of Cu-4 wt.%Ni-TiC composites under dry sliding conditions. Friction 2017, 5, 437–446. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Wu, C.; Zhou, S.; Jin, J.; Zhao, S.; Chen, D. TiB2- and Fe2P with nanotwins-reinforced Cu-based immiscible composites fabricated by selective laser melting: Formation mechanism and wear behavior. J. Alloys Compd. 2021, 864, 158716. [Google Scholar] [CrossRef]
- Zou, C.; Chen, Z.; Kang, H.; Wang, W.; Li, R.; Li, T.; Wang, T. Study of enhanced dry sliding wear behavior and mechanical properties of Cu-TiB2 composites fabricated by in situ casting process. Wear 2017, 392, 118–125. [Google Scholar] [CrossRef]
- Senatore, A.; Risitano, G.; Scappaticci, L.; D’Andrea, D. Investigation of the Tribological Properties of Different Textured Lead Bronze Coatings under Severe Load Conditions. Lubricants 2021, 9, 34. [Google Scholar] [CrossRef]
- Dong, B.W.; Wang, S.H.; Dong, Z.Z.; Jie, J.C.; Wang, T.M.; Li, T.J. Novel insight into dry sliding behavior of Cu-Pb-Sn in-situ composite with secondary phase in different morphology. J. Mater. Sci. Technol. 2020, 40, 158–167. [Google Scholar] [CrossRef]
- Zhai, W.; Hu, L.; Geng, D.L.; Wei, B. Thermodynamic properties and microstructure evolution of ternary Al-10%Cu-x%Sn immiscible alloys. J. Alloys Compd. 2015, 627, 402–409. [Google Scholar] [CrossRef]
- Costa, T.A.; Dias, M.; Freitas, E.S.; Casteletti, L.C.; Garcia, A. The effect of microstructure length scale on dry sliding wear behaviour of monotectic Al-Bi-Sn alloys. J. Alloys Compd. 2016, 689, 767–776. [Google Scholar] [CrossRef]
- Cui, G.; Niu, M.; Zhu, S.; Yang, J.; Bi, Q. Dry-Sliding Tribological Properties of Bronze-Graphite Composites. Tribol. Lett. 2012, 48, 111–122. [Google Scholar] [CrossRef]
Copper Layer | Pb | Sn | P | Ni | Zn | Cu |
---|---|---|---|---|---|---|
EN CC497K | 18.35 | 4.88 | 0.08 | 1.83 | 1.75 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, Y.; Zhang, G.; Wang, Z.; Xu, H.; Wan, A. Effect of Two-Stage Cooling on the Microstructure and Tribological Properties of Steel–Copper Bimetals. Materials 2022, 15, 492. https://doi.org/10.3390/ma15020492
Kang Y, Zhang G, Wang Z, Xu H, Wan A. Effect of Two-Stage Cooling on the Microstructure and Tribological Properties of Steel–Copper Bimetals. Materials. 2022; 15(2):492. https://doi.org/10.3390/ma15020492
Chicago/Turabian StyleKang, Yuanyuan, Guowei Zhang, Zhaojie Wang, Hong Xu, and An Wan. 2022. "Effect of Two-Stage Cooling on the Microstructure and Tribological Properties of Steel–Copper Bimetals" Materials 15, no. 2: 492. https://doi.org/10.3390/ma15020492
APA StyleKang, Y., Zhang, G., Wang, Z., Xu, H., & Wan, A. (2022). Effect of Two-Stage Cooling on the Microstructure and Tribological Properties of Steel–Copper Bimetals. Materials, 15(2), 492. https://doi.org/10.3390/ma15020492