Experimental Study on the Blast Resistance Performance of FRP Grid & Mortar Reinforced Concrete Arch Structure
Abstract
:1. Introduction
2. Experiment Scheme
2.1. Composite Arch Structure
2.2. Anti-Explosion Experiment
3. Experiment Results
3.1. Arch Damage Mode
3.2. Comparative Analysis of Arch Damages
4. Conclusions
- The blast resistance of FRP grid and mortar reinforced concrete arch was significantly higher than that of the unreinforced arch. The FRP grid and mortar composite reinforcement technology can be used to enhance the blast resistance of arch structures in protection projects.
- By analyzing the blast resistance test results and comparing them with the FRP and steel plate reinforced arch in the literature, the concrete arch reinforced with FRP grid and mortar has different degrees of improvement in damage patterns and improved blast resistance performance. The new composite grid and mortar reinforcement is useful for controlling crack expansion, inhibiting concrete spalling, and improving structural loading performance. This type of reinforcement can effectively inhibit the further expansion of concrete cracks, disperse large cracks into small ones, and effectively improve the overall working performance of the arch structure.
- From the viewpoint of maintaining the integrity of the blast-resistant structure, the new FRP grid and mortar reinforcement method is more advantageous than the traditional reinforcement method and can reduce the reinforcement cost while realizing the blast resistance effectiveness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, Y.; Sun, H.; Chen, Z.; Bai, E.; Sun, H. Numerical Simulation of Damping Performance of Elastically Supported Underground Arch Structures Subject to Penetration and Explosion. Adv. Civ. Eng. 2022, 2022, 9707479. [Google Scholar] [CrossRef]
- Simos, N.; Manos, G.C.; Kozikopoulos, E. Near- and far-field earthquake damage study of the Konitsa stone arch bridge. Eng. Struct. 2018, 177, 256–267. [Google Scholar] [CrossRef]
- Guangkun, L.; Wei, W.; Ruichao, L.; Weiming, Z.; Qiang, Z. Deriving formulas of loading distribution on underground arch structure surface under close-in explosion. Eng. Fail. Anal. 2020, 115, 104608. [Google Scholar] [CrossRef]
- Flathau, W.J.; Sager, R.A. The Design of Buried Arches to Resist Loads; Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1964. [Google Scholar]
- Zhao, C.; Liu, Y.; Wang, P.; Jiang, M.; Zhou, J.; Kong, X.; Chen, Y.; Jin, F. Wrapping and anchoring effects on CFRP strengthened reinforced concrete arches subjected to blast loads. Struct. Concr. 2021, 22, 1913–1926. [Google Scholar] [CrossRef]
- Wang, P.; Chen, H.; Zhou, J.; Zhou, Y.; Wang, B.; Jiang, M.; Jin, F.; Fan, H. Failure mechanisms of CFRP-wrapped protective concrete arches under static and blast loadings: Experimental research. Compos. Struct. 2018, 198, 1–10. [Google Scholar] [CrossRef]
- Effiong, J.U.; Ede, A.N. Experimental Investigation on the Strengthening of Reinforced Concrete Beams Using Externally Bonded and Near-Surface Mounted Natural Fibre Reinforced Polymer Composites—A Review. Materials 2022, 15, 5848. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, A.K.; Singh, S.; Kumar, R.; Sharma, K.; Chohan, J.S.; Sharma, S.; Singh, J.; Kumar, J.; Deifalla, A.F. Comparative Study on the Behavior of Reinforced Concrete Beam Retrofitted with CFRP Strengthening Techniques. Polymers 2022, 14, 4024. [Google Scholar] [CrossRef]
- Milad, A.; Hussein, S.H.; Khekan, A.R.; Rashid, M.; Al-Msari, H.; Tran, T.H. Development of ensemble machine learning approaches for designing fiber-reinforced polymer composite strain prediction model. Eng. Comput. 2022, 38, 3625–3637. [Google Scholar] [CrossRef]
- Chen, P.; Wang, H.; Cao, S.; Lv, X. Prediction of Mechanical Behaviours of FRP-Confined Circular Concrete Columns Using Artificial Neural Network and Support Vector Regression: Modelling and Performance Evaluation. Materials 2022, 15, 4971. [Google Scholar] [CrossRef] [PubMed]
- Hamed, E.; Chang, Z.T.; Rabinovitch, O. Strengthening of Reinforced Concrete arches with Externally Bonded Composite Materials: Testing and Analysis. J. Compos. Constr. 2015, 19, 04014031. [Google Scholar] [CrossRef]
- Ostad-Ali-Askari, K.A.V.E.H.; Singh, V.P.; Dalezios, N.R.; Crusberg, T.C. Methods of strengthening reinforced concrete structures and introduction to the method of FRP sheet reinforcement. Methods 2018, 1, 1–6. [Google Scholar]
- Anas, S.M.; Alam, M. Performance of brick-filled reinforced concrete composite wall strengthened with CFRP laminate (s) under blast loading. Mater. Today Proc. 2022, 65, 1–11. [Google Scholar] [CrossRef]
- Xie, W.; Jiang, M.; Chen, H.; Zhou, J.; Xu, Y.; Wang, P.; Fan, H.; Jin, F. Experimental behaviors of CFRP cloth strengthened buried arch structure subjected to subsurface localized explosion. Compos. Struct. 2014, 116, 562–570. [Google Scholar] [CrossRef]
- Chen, H.; Xie, W.; Jiang, M.; Wang, P.; Zhou, J.; Fan, H.; Zheng, Q.; Jin, F. Blast-loaded behaviors of severely damaged buried arch repaired by anchored CFRP strips. Compos. Struct. 2015, 122, 92–93. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, P.; Jiang, M.; Fan, H.; Zhou, J.; Li, W.; Dong, L.; Chen, H.; Jin, F. CFRP strengthening reinforced concrete arches: Strengthening methods and experimental studies. Compos. Struct. 2015, 131, 852–867. [Google Scholar] [CrossRef]
- Guo, R.; Ren, Y.; Li, M.; Hu, P.; Du, M.; Zhang, R. Experimental study on flexural shear strengthening effect on low-strength RC beams by using FRP grid and ECC. Eng. Struct. 2020, 227, 111434. [Google Scholar] [CrossRef]
- Zheng, A.; Liu, Z.; Li, F.; Li, S. Experimental investigation of corrosion-damaged RC beams strengthened in flexure with FRP grid-reinforced ECC matrix composites. Eng. Struct. 2021, 244, 112779. [Google Scholar] [CrossRef]
- Sha, X.; Wang, Z.; Feng, P.; Yang, J.-Q. Axial compressive behavior of square-section concrete columns transversely reinforced with FRP grids. J. Compos. Constr. 2020, 24, 04020028. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Jin, F.; He, H.; Zhou, Y.; Chen, H.; Zhou, J.; Wang, B.; Fan, H. Blast responses of polyurea-coated concrete arches. Arch. Civ. Mech. Eng. 2021, 21, 30. [Google Scholar] [CrossRef]
Concrete | Steel Bar | ||||
---|---|---|---|---|---|
Tensile Strength | Compressive Strength | Elastic Modulus | Elastic Modulus | Yield Strength | Ultimate Strength |
2.5 MPa | 29.1 MPa | 30 GPa | 200 GPa | 335 MPa | 455 MPa |
Thickness /mm | Fiber Area/(mm2) | Ultimate Load/N | Strength /MPa | Modulus of Elasticity/GPa | Fracture Strain |
---|---|---|---|---|---|
1 | 1.81 | 4013 | 2217 | 93.4 | 2.37% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Qi, S.; Pu, S.; Wang, P.; Wang, B.; Du, Z. Experimental Study on the Blast Resistance Performance of FRP Grid & Mortar Reinforced Concrete Arch Structure. Materials 2022, 15, 7149. https://doi.org/10.3390/ma15207149
Jiang M, Qi S, Pu S, Wang P, Wang B, Du Z. Experimental Study on the Blast Resistance Performance of FRP Grid & Mortar Reinforced Concrete Arch Structure. Materials. 2022; 15(20):7149. https://doi.org/10.3390/ma15207149
Chicago/Turabian StyleJiang, Meirong, Shihu Qi, Shikun Pu, Peng Wang, Bo Wang, and Zhanzhan Du. 2022. "Experimental Study on the Blast Resistance Performance of FRP Grid & Mortar Reinforced Concrete Arch Structure" Materials 15, no. 20: 7149. https://doi.org/10.3390/ma15207149
APA StyleJiang, M., Qi, S., Pu, S., Wang, P., Wang, B., & Du, Z. (2022). Experimental Study on the Blast Resistance Performance of FRP Grid & Mortar Reinforced Concrete Arch Structure. Materials, 15(20), 7149. https://doi.org/10.3390/ma15207149