The Effects of Alloying Elements Cr, Al, and Si on Oxidation Behaviors of Ni-Based Superalloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isothermal Oxidation
2.3. Microstructure Characterization
2.4. Thermodynamic Calculation
3. Results
3.1. Initial Microstructures
3.2. Oxidation Kinetics Curves
3.3. Cross-Sectional Microstructure and Composition of Oxide Scales
3.3.1. Analysis of Ni, Ni-20Cr, and Ni-15Al Oxide Scales
3.3.2. Analysis of Ni-15Al-2Si Oxide Scales
4. Discussion
4.1. Oxidation Kinetics
4.2. Oxidation Mechanism and Oxide Layer Formation
5. Summary and Conclusions
- The addition of 20 at.% Cr can effectively improve the oxidation resistance of Ni-based alloy by forming a thin chromia film below 900 °C. However, the protection of chromia is reduced due to formation of volatile CrO3 above 1000 °C, resulting in catastrophic oxidation.
- The addition of 15 at.% Al can form an inner alumina layer above 900 °C to provide effective protection, thus showing excellent oxidation resistance at higher temperatures. However, at temperatures below 800 °C, Al addition intensifies oxidation due to the high oxygen affinity of Al, and continuous protective scales cannot form.
- At 900 °C, the additions of Al and Cr can both improve the oxidation resistance, while the effect of Al on oxidation resistance is more pronounced than that of Cr.
- Si can form a synergistic effect with Al to affect the oxidation resistance, rather than forming a silicon oxide layer at temperatures between 700 °C and 1200 °C. By promoting alumina formation, the addition of 2 at.% Si can improve the oxidation resistance of Ni-Al alloys above 800 °C.
- At the relatively low temperature of 700 °C, the addition of Si cannot promote the formation of the protective alumina layer in Ni-Al alloy, where coarse alumina particles in the internal oxidation zone are formed.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reed, R.C. The Superalloys: Fundamentals and Applications, 1st ed.; Cambridge University Press: Cambridge, UK, 2006; pp. 1–33. [Google Scholar]
- Young, D.J. High Temperature Oxidation and Corrosion of Metals, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 27–141. [Google Scholar]
- Akande, I.G.; Oluwole, O.O.; Fayomi, O.S.I.; Odunlami, O.A. Overview of mechanical, microstructural, oxidation properties and high-temperature applications of superalloys. Mater. Today Proc. 2021, 43, 2222–2231. [Google Scholar] [CrossRef]
- Pollock, T.M.; Tin, S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Birks, N.; Meier, G.H.; Pettit, F.S. Introduction to the High Temperature Oxidation of Metals, 2nd ed.; Cambridge University Press: Cambridge, UK, 2006; pp. 1–127. [Google Scholar]
- Bose, S. High Temperature Coatings, 2nd ed.; Garcia, A.C., Ed.; Butterworth-Heinemann: Langford, Australia, 2017; pp. 53–96. [Google Scholar]
- Khanna, A.S. Handbook of Environmental Degradation of Materials, 3rd ed.; Elsevier, William Andrew: Noewich, NY, USA, 2018; pp. 117–132. [Google Scholar]
- Wang, E.; Sun, D.; Liu, H.; Lu, M.; Guo, W.; Zheng, B.; Zhang, X. The oxidation behavior of Ni–15Cr–5Al–xSi (x = 0, 1, 3, 5 wt.%) alloys in air at 1100 °C. Oxid. Met. 2019, 92, 151–166. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Y.; Ni, C.S.; Niu, Y. The effect of Si additions on the high temperature oxidation of a ternary Ni–10Cr–4Al alloy in 1atm O2 at 1100 °C. Corros. Sci. 2009, 51, 511–517. [Google Scholar] [CrossRef]
- Li, D.; Chen, G.; Li, D.; Zheng, Q.; Gao, P.; Zhang, L. Oxidation resistance of nickel-based superalloy Inconel 600 in air at different temperatures. Rare Met. 2021, 40, 3235–3240. [Google Scholar] [CrossRef]
- Bataillou, L.; Martinelli, L.; Desgranges, C.; Bosonnet, S.; Ginestar, K. Growth kinetics and characterization of chromia scales formed on Ni–30Cr alloy in impure argon at 700 °C. Oxid. Met. 2020, 93, 329–353. [Google Scholar] [CrossRef]
- Hou, P.Y. Oxidation of metals and alloys. In Shreir’s Corrosion, 1st ed.; Cottis, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 1, pp. 195–239. [Google Scholar]
- Tang, Z.; Hu, R.; Li, J. Isothermal oxidation behavior of Ni-20Cr-18W superalloy at 1100 °C. Rare Met. Mater. Eng. 2012, 41, 2081–2085. [Google Scholar]
- Vargel, C. Corrosion of aluminium. In Corrosion of Aluminium, 2nd ed.; Legrand, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 91–111. [Google Scholar]
- Giggins, C.S.; Pettit, F.S. Oxidation of Ni-Cr-Al alloys between 1000 °C and 1200 °C. J. Electrochem. Soc. 1971, 118, 1782–1790. [Google Scholar] [CrossRef]
- Prescott, R.; Graham, M.J. The formation of aluminum oxide scales on high-temperature alloys. Oxid. Met. 1992, 38, 233–254. [Google Scholar] [CrossRef]
- Hayashi, S.; Narita, S.; Narita, T. Oxidation behavior of Ni-3, 6, 10 wt.% Al alloys at 800 °C. Oxid. Met. 2006, 66, 191–207. [Google Scholar] [CrossRef]
- Pei, H.; Wen, Z.; Zhang, Y.; Yue, Z. Oxidation behavior and mechanism of a Ni-based single crystal superalloy with single α-Al2O3 film at 1000 °C. Appl. Surf. Sci. 2017, 411, 124–135. [Google Scholar] [CrossRef]
- Gao, W. Developments in High Temperature Corrosion and Protection of Materials; CRC Press: Boca Raton, FL, USA, 2008; pp. 399–432. [Google Scholar]
- Wright, I.G. Oxidation of Iron-, Nickel-, and Cobalt-Base Alloys. Corrosion 1965, 21, 316–326. [Google Scholar]
- Chattopadhyay, B.; Wood, G.C. The transient oxidation of alloys. Oxid. Met. 1970, 2, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Wang, L.; Zhang, H.; Bai, L.; Wan, C.; Yang, G. Comparison of Isothermal Oxidation Behavior of Co-10Cr-xSi(x=0,5,10)Alloys at 1 073K. J. Beijing Inst. Technol. 2018, 27, 65–70. [Google Scholar]
- Stott, F.H. Influence of alloy additions on oxidation. Mater. Sci. Technol. 1989, 5, 734–740. [Google Scholar] [CrossRef]
- Šulhánek, P.; Drienovský, M.; Černičková, I.; Ďuriška, L.; Skaudžius, R.; Gerhátová, Ž.; Palcut, M. Oxidation of Al-Co Alloys at High Temperatures. Materials 2020, 13, 3152. [Google Scholar] [CrossRef]
- Prescott, R.; Graham, M.J. The oxidation of iron-aluminum alloys. Oxid. Met. 1992, 38, 73–87. [Google Scholar] [CrossRef]
- Wehner, B.I.; Köster, U. Microstructural Evolution of Alumina Layers on an Al–Cu–Fe Quasicrystal during High-Temperature Oxidation. Oxid. Met. 2000, 54, 445–456. [Google Scholar] [CrossRef]
- Yeh, A.C.; Kawagishi, K.; Harada, H.; Yokokawa, T.; Koizumi, Y. Development of Si-bearing 4th generation Ni-base single crystal superalloys. Carbon N. Y. 2008, 20, 619–628. [Google Scholar]
- Sato, A.; Harada, H.; Koizumi, Y.; Kobayashi, T.; Kawagishi, K.; Imai, H. Oxidation resistances of silicon-containing 5th generation Ni-base single crystal superalloys. J. Jpn. Inst. Met. 2006, 70, 180–183. [Google Scholar] [CrossRef] [Green Version]
- Hindam, H.; Whittle, D.P. High temperature internal oxidation behaviour of dilute Ni-Al alloys. J. Mater. Sci. 1983, 18, 1389–1404. [Google Scholar] [CrossRef]
- Wu, Y.; Gesmundo, F.; Niu, Y. The effect of silicon on the oxidation of a Ni-6 at.% Al alloy in 1 atm of pure O2 at 900 °C. Oxid. Met. 2006, 65, 53–74. [Google Scholar] [CrossRef]
- Niu, Y.; Wu, Y.; Gesmundo, F. The oxidation of three Ni–6Si–xAl alloys in 1atm O2 at 1000 °C. Corros. Sci. 2006, 48, 1–22. [Google Scholar] [CrossRef]
- Wu, Y.; Niu, Y. High temperature scaling of Ni–xSi–10 at.% Al alloys in 1atm of pure O2. Corros. Sci. 2007, 49, 1656–1672. [Google Scholar] [CrossRef]
- Rehman, K.; Sheng, N.; Sang, Z.; Xun, S.; Wang, Z.; Xie, J.; Hou, G.; Zhou, Y.; Sun, X. Comparative study of the reactive elements effects on oxidation behavior of a Ni-based superalloy. Vacuum 2021, 191, 110382. [Google Scholar] [CrossRef]
- Taylor, M.; Ding, R.; Mignanelli, P.; Hardy, M. Oxidation behaviour of a developmental nickel-based alloy and the role of minor elements. Corros. Sci. 2022, 196, 110002. [Google Scholar] [CrossRef]
- Cheng, C.; Hu, Y.; Cao, T.; Zhang, L.; Zhu, Y.; Zhao, J. Two typical oxidation models on nickel-based superalloys under different initial surface roughness. Corros. Sci. 2020, 176, 108942. [Google Scholar] [CrossRef]
- Tan, Z.H.; Wang, X.G.; Song, W.; Yang, Y.H.; Liu, J.L. Oxidation behavior of a novel nickel-based single crystal superalloy at elevated temperature. Vacuum 2020, 175, 109284. [Google Scholar] [CrossRef]
- Douglass, D.L. The oxidation mechanism of dilute Ni-Cr alloys. Corros. Sci. 1968, 8, 665–678. [Google Scholar] [CrossRef]
- Gulbransen, E.A.; Wysong, W.S. Thin Oxide Films on Aluminum. J. Phys. Colloid Chem. 1947, 51, 1087–1103. [Google Scholar] [CrossRef]
Samples | Ni | Cr | Al | Si |
---|---|---|---|---|
Ni | 100.0 | - | - | - |
Ni-20Cr | 80.0 | 20.0 | - | - |
Ni-15Al | 85.0 | - | 15.0 | - |
Ni-15Al-2Si | 83.0 | - | 15.0 | 2.0 |
Temperature | Ni | Ni-20Cr | Ni-15Al |
---|---|---|---|
700 °C | 12 (±1) | 2.2 (±0.8) | 29.1 (±1.4) |
800 °C | 40 (±3) | 26.1 (±2.1) | 42.7 (±2.1) |
900 °C | 48.7 (±4.9) | 20.7 (±2.3) | 18.9 (±4.2) |
1000 °C | 51.6 (±3.2) | 107.9 (±11.0) | 22.7 (±4.4) |
1100 °C | 141.7 (±11.0) | >300 | 26.9 (±3.2) |
1200 °C | 336.9 (±57.2) | >400 | 27.6 (±3.7) |
Temperatures | Ni | Ni-20Cr | Ni-15Al | Ni-15Al-2Si |
---|---|---|---|---|
900 °C | 2.1 × 10−5 | 5.8 × 10−6 | 2.1 × 10−6 | 1.9 × 10−6 |
1000 °C | 4.4 × 10−5 | 2.0 × 10−5 | 3.3 × 10−6 | 2.3 × 10−6 |
1100 °C | 9.0 × 10−5 | 9.8 × 10−4 | 1.9 × 10−5 | 3.1 × 10−6 |
1200 °C | 6.6 × 10−4 | 6.2 × 10−3 | 2.1 × 10−5 | 7.3 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Ding, Q.; Wei, X.; Zhang, Z.; Bei, H. The Effects of Alloying Elements Cr, Al, and Si on Oxidation Behaviors of Ni-Based Superalloys. Materials 2022, 15, 7352. https://doi.org/10.3390/ma15207352
Ma S, Ding Q, Wei X, Zhang Z, Bei H. The Effects of Alloying Elements Cr, Al, and Si on Oxidation Behaviors of Ni-Based Superalloys. Materials. 2022; 15(20):7352. https://doi.org/10.3390/ma15207352
Chicago/Turabian StyleMa, Suyu, Qingqing Ding, Xiao Wei, Ze Zhang, and Hongbin Bei. 2022. "The Effects of Alloying Elements Cr, Al, and Si on Oxidation Behaviors of Ni-Based Superalloys" Materials 15, no. 20: 7352. https://doi.org/10.3390/ma15207352
APA StyleMa, S., Ding, Q., Wei, X., Zhang, Z., & Bei, H. (2022). The Effects of Alloying Elements Cr, Al, and Si on Oxidation Behaviors of Ni-Based Superalloys. Materials, 15(20), 7352. https://doi.org/10.3390/ma15207352