Preparation and Properties of Different Polyether-Type Defoamers for Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.2.1. Synthesis and Characterization of Defoamers
2.2.2. Test of Aqueous Solution Samples
2.2.3. Test of Fresh Cement Mortar Samples
2.2.4. Test of Hardened Cement Mortar Samples
3. Results and Discussion
3.1. Preparation and Characterization of the Defoamers
3.2. Surface Activity of the Defoamers
3.3. Properties of the Defoamers in Aqueous Solutions
3.4. Properties of the Defoamers in Fresh Cement Mortars
3.5. Properties of Defoamers in Hardened Cement Mortars
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chatterji, S. Freezing of air-entrained cement-based materials and specific actions of air-entraining agents. Cem. Concr. Compos. 2003, 25, 759–765. [Google Scholar] [CrossRef]
- Du, L.X.; Folliard, K.J. Mechanisms of air entrainment in concrete. Cem. Concr. Res. 2005, 35, 1463–1471. [Google Scholar] [CrossRef]
- Plank, J.; Sakai, E.; Miao, C.W.; Yu, C.; Hong, J.X. Chemical admixtures–chemistry, applications and their impact on concrete microstructure and durability. Cem. Concr. Res. 2015, 78, 81–99. [Google Scholar] [CrossRef]
- Dhir, R.K.; McCarthy, M.J.; Limbachiya, M.C.; ESayad, H.I.; Zhang, D.S. Pulverized fuel ash concrete: Air entrainment and freeze/thaw urability. Mag. Concr. Res. 1999, 51, 53–64. [Google Scholar] [CrossRef]
- Yang, Q.B.; Zhu, P.R.; Wu, X.L.; Huang, S.Y. Properties of concrete with a new type of saponin air-entraining agent. Cem. Concr. Res. 2000, 30, 1313–1317. [Google Scholar] [CrossRef]
- Łaźniewska-Piekarczyk, B. The influence of selected new generation admixtures on the workability, air-voids parameters and frost-resistance of self-compacting concrete. Constr. Build. Mater. 2012, 31, 310–319. [Google Scholar] [CrossRef]
- Mayercsik, N.P.; Vandamme, M.; Kurtis, K.E. Assessing the efficiency of entrained air voids for freeze-thaw durability through modeling. Cem. Concr. Res. 2016, 88, 43–59. [Google Scholar] [CrossRef]
- Abousnina, R.; Manalo, A.; Ferdous, W.; Lokuge, W.; Benabed, B.; Al-Jabri, K.S. Characteristics, strength development and microstructure of cement mortar containing oil-contaminated sand. Constr. Build. Mater. 2020, 252, 119155. [Google Scholar] [CrossRef]
- Ferdous, W.; Manalo, A.; Siddique, R.; Mendis, P.; Zhuge, Y.; Wong, H.S.; Lokuge, W.; Aravinthan, T.; Schubel, P. Recycling of landfill wastes (tyres, plastics and glass) in construction—A review on global waste generation, performance, application and future opportunities. Resour. Conserv. Recycl. 2021, 173, 105745. [Google Scholar] [CrossRef]
- Huo, J.Y.; Wang, Z.J.; Chen, H.X.; He, R. Impacts of low atmospheric pressure on properties of cement concrete in plateau areas: A literature review. Materials 2019, 12, 1384. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Z.T.; Yang, Y.Z. Study of the air-entraining behavior based on the interactions between cement particles and selected cationic, anionic and nonionic surfactants. Materials 2020, 13, 3514. [Google Scholar] [CrossRef] [PubMed]
- Sypek, M.; Latawiec, R.; Łaźniewska-Piekarczyk, B.; Pichór, W. Impact of surfactant and calcium sulfate type on air-entraining effectiveness in concrete. Materials 2022, 15, 985. [Google Scholar] [CrossRef] [PubMed]
- Lange, A.; Plank, J. Study on the foaming behaviour of allyl ether-based polycarboxylate superplasticizers. Cem. Concr. Res. 2012, 42, 484–489. [Google Scholar] [CrossRef]
- Khayat, K.H.; Assaad, J. Air-void stability in self-consolidating concrete. ACI Mater. J. 2002, 99, 408–416. [Google Scholar]
- Dolch, W.L. 8-Air-entraining admixtures. In Concrete Admixtures Handbook, 2nd ed.; Ramachandran, V.S., Ed.; William Andrew Publishing: Park Ridge, NJ, USA, 1996; pp. 518–557. [Google Scholar]
- Nkinamubanzi, P.-C.; Mantellato, S.; Flatt, R.J. Superplasticizers in practice. In Science and Technology of Concrete Admixture; Aïtcin, P.-C., Flatt, R.J., Eds.; Woodhead Publishing: Sawston, UK, 2016; Chapter 16; pp. 353–378. [Google Scholar]
- Krastanka, G.M.; Slavka, T.; Nikolai, D.D. Model studies on the mechanism of deactivation (exhaustion) of mixed oil-silica antifoams. Langmuir 2003, 19, 3084–3089. [Google Scholar]
- Chen, J.; Shan, G.C.; Wu, J.Z.; Qiao, M.; Gao, N.X.; Ran, Q.P. Branched alkyl polyethers as novel defoamers for concrete. Cem. Concr. Res. 2022, 157, 106821. [Google Scholar] [CrossRef]
- Qiao, M.; Chen, J.; Gao, N.X.; Shan, G.C.; Wu, J.Z.; Ran, Q.P. Synthesis and properties of different alkyl alcohol polyethers as the defoamers for concrete. Colloid Surf. A 2022, 646, 128998. [Google Scholar] [CrossRef]
- Joshi, K.S.; Jeelani, S.A.K.; Blickenstorfer, C.; Naegeli, I.; Windhab, E.J. Influence of fatty alcohol antifoam suspensions on foam stability. Colloid Surf. A 2005, 263, 239–249. [Google Scholar] [CrossRef]
- Marinova, K.G.; Denkov, N.D.; Branlard, P.; Giraud, Y.; Deruelle, M. Optimal hydrophobicity of silica in mixed oil-silica antifoams. Langmuir 2002, 18, 3399–3403. [Google Scholar] [CrossRef]
- Denkov, N.D.; Tcholakova, S.; Marinova, K.G.; Hadjiiski, A. Role of oil spreading for the efficiency of mixed oil-solid antifoams. Langmuir 2002, 18, 5810–5817. [Google Scholar] [CrossRef]
- Çalik, P.; Ileri, N.; Erdinç, B.I. Novel antifoam for fermentation processes: Fluorocarbon-hydrocarbon hybrid unsymmetrical bolaform surfactant. Langmuir 2005, 21, 8613–8619. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Cai, C.; Wang, L.; Cao, Z.-P.; Yi, W.-B. Breaking and inhibiting foam performance of modified silicone oils in oil-based systems. J. Disper. Sci. Technol. 2008, 29, 792–795. [Google Scholar] [CrossRef]
- Wu, F.; Cai, C.; Yi, W.-B.; Cao, Z.-P.; Wang, Y. Antifoaming performance of polysiloxanes modified with fluoroalkyls and polyethers. J. Appl. Polym. Sci. 2008, 109, 1950–1954. [Google Scholar] [CrossRef]
- Bahranifard, Z.; Tabrizi, F.F.; Vosoughi, A.R. An investigation on the effect of styrene-butyl acrylate copolymer latex to improve the properties of polymer modified concrete. Constr. Build. Mater. 2019, 205, 175–185. [Google Scholar] [CrossRef]
- Li, L.X.; Liu, T.L.; Jiang, G.S.; Zheng, S.J.; Fang, C.L.; Sun, J.X.; Qu, B.; Zhu, Y.F. Interactive mechanism of manufacturing factors on the properties of microbial cementing slurry. Constr. Build. Mater. 2021, 311, 125308. [Google Scholar] [CrossRef]
- Fan, S.M.; Wang, T.; Qi, S.; Ma, J.F.; Huang, Z.; Chen, J.; Ran, Q.P. Synthesis and performance of polycarboxylate superplasticisers with different propylene oxide contents. Adv. Cem. Res. 2019, 31, 205–213. [Google Scholar] [CrossRef]
- Shan, G.C.; Zhao, S.; Qiao, M.; Gao, N.X.; Chen, J.; Ran, Q.P. Synergism effects of coconut diethanol amide and anionic surfactants for entraining stable air bubbles into concrete. Constr. Build. Mater. 2020, 237, 117625. [Google Scholar] [CrossRef]
- Qiao, M.; Chen, J.; Yu, C.; Wu, S.S.; Gao, N.X.; Ran, Q.P. Gemini surfactants as novel air entraining agents for concrete. Cem. Concr. Res. 2017, 100, 40–46. [Google Scholar] [CrossRef]
- Chen, J.; Qiao, M.; Gao, N.X.; Ran, Q.P.; Wu, S.S.; Qi, S. Sulfonic gemini surfactants: Synthesis, properties and applications as novel air entraining agents for concrete. Colloid Surf. A 2017, 522, 593–600. [Google Scholar] [CrossRef]
- Chen, J.; Qiao, M.; Gao, N.X.; Ran, Q.P.; Wu, J.Z.; Shan, G.C.; Qi, S.; Wu, S.S. Cationic oligomeric surfactants as novel air entraining agents for concrete. Colloid Surf. A 2018, 538, 686–693. [Google Scholar] [CrossRef]
- Menger, F.M.; Littau, C.A. Gemini surfactants: Synthesis and properties. J. Am. Chem. Soc. 1991, 113, 1451–1452. [Google Scholar] [CrossRef]
- Menger, F.M.; Keiper, J.S. Gemini surfactants. Angew. Chem. Int. 2000, 39, 1906–1920. [Google Scholar] [CrossRef]
- Menger, F.M.; Keiper, J.S.; Azov, V. Gemini surfactants with acetylenic spacers. Langmuir 2000, 16, 2062–2067. [Google Scholar] [CrossRef]
- Tehrani-Bagha, A.R.; Holmberg, K.; van Ginkel, C.G.; Kean, M. Cationic gemini surfactants with cleavable spacer: Chemical hydrolysis, biodegradation, and toxicity. J. Colloid Interf. Sci. 2015, 449, 72–79. [Google Scholar] [CrossRef]
- Qiao, M.; Shan, G.C.; Chen, J.; Wu, S.S.; Gao, N.X.; Ran, Q.P.; Liu, J.P. Effects of salts and adsorption on the performance of air entraining agent with different charge type in solution and cement mortar. Constr. Build. Mater. 2020, 242, 118188. [Google Scholar] [CrossRef]
- Jeknavorian, A. Overview of defoaming technologies for polycarboxylate-based superplasticizers. In Proceedings of the 12th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete, Beijing, China, 28–31 October 2018; ACI SP-329-16. pp. 185–199. [Google Scholar]
- Zeng, X.H.; Lan, X.L.; Zhu, H.S.; Liu, H.C.; Abdullahi Umar, H.; Xie, Y.J.; Long, G.C.; Ma, C. A review on bubble stability in fresh concrete: Mechanisms and main factors. Materials 2020, 13, 1820. [Google Scholar] [CrossRef] [Green Version]
- Tunstall, L.E.; Ley, M.T.; Scherer, G.W. Air entraining admixtures: Mechanisms, evaluations, and interactions. Cem. Concr. Res. 2021, 150, 106557. [Google Scholar] [CrossRef]
- Shah, H.A.; Yuan, Q.; Zuo, S.H. Air entrainment in fresh concrete and its effects on hardened concrete—A review. Constr. Build. Mater. 2021, 274, 121835. [Google Scholar] [CrossRef]
- Du, Z.X.; Xiong, J.B.; Zuo, W.Q.; She, W. Using modified nano-silica to prevent bubble Ostwald ripening under low atmospheric pressure: From liquid foam to air-entrained cement mortar. Cem. Concr. Compos. 2022, 132, 104627. [Google Scholar] [CrossRef]
Defoamers | Chemical Structure |
---|---|
OE1 | OA-4EO |
OE2 | OA-6EO |
OE3 | OA-8EO |
OE4 | OA-10EO |
OEP1 | OA-4EO-4PO |
OEP2 | OA-4PO-4EO |
Defoamers | CMC (mM) | γCMC (mN/m) |
---|---|---|
OE1 | 0.007 | 30.63 |
OE2 | 0.011 | 31.53 |
OE3 | 0.016 | 35.12 |
OE4 | 0.025 | 35.89 |
OEP1 | 0.013 | 34.47 |
OEP2 | 0.004 | 27.30 |
Defoamers | Maximum Foam Height (mm) | Complete Defoaming Time (s) |
---|---|---|
Blank | 167 | >700 |
OE1 | 108 | 466 |
OE2 | 122 | >700 |
OE3 | 143 | >700 |
OE4 | 159 | >700 |
OEP1 | 96 | 214 |
OEP2 | 85 | 164 |
Defoamers | Spread Diameter (mm) | Bulk Density (g/L) | Air Content (%) |
---|---|---|---|
Blank | 202 | 1807 | 10.4 |
OE1 | 247 | 1985 | 3.3 |
OE2 | 237 | 1966 | 4.0 |
OE3 | 216 | 1912 | 6.2 |
OE4 | 211 | 1855 | 8.6 |
OEP1 | 228 | 1941 | 5.0 |
OEP2 | 252 | 2008 | 2.3 |
Defoamers | Air Content (%) | Air-Void Spacing Factors (mm) | Compressive Strength (MPa) | ||
---|---|---|---|---|---|
3 d | 7 d | 28 d | |||
Blank | 12.33 | 0.22 | 21 | 31.4 | 42.1 |
OE1 | 4.98 | 0.49 | 24.2 | 36.5 | 48.4 |
OE2 | 6.38 | 0.41 | 23.5 | 35.8 | 46.5 |
OE3 | 7.36 | 0.36 | 22.2 | 34.8 | 44.8 |
OE4 | 9.94 | 0.25 | 21.3 | 32.4 | 43.2 |
OEP1 | 7.73 | 0.33 | 22 | 34.8 | 44.6 |
OEP2 | 3.05 | 0.58 | 25.2 | 39.2 | 50.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, M.; Wu, J.; Gao, N.; Shan, G.; Shen, F.; Chen, J.; Zhu, B. Preparation and Properties of Different Polyether-Type Defoamers for Concrete. Materials 2022, 15, 7492. https://doi.org/10.3390/ma15217492
Qiao M, Wu J, Gao N, Shan G, Shen F, Chen J, Zhu B. Preparation and Properties of Different Polyether-Type Defoamers for Concrete. Materials. 2022; 15(21):7492. https://doi.org/10.3390/ma15217492
Chicago/Turabian StyleQiao, Min, Jingzhi Wu, Nanxiao Gao, Guangcheng Shan, Fei Shen, Jian Chen, and Bosong Zhu. 2022. "Preparation and Properties of Different Polyether-Type Defoamers for Concrete" Materials 15, no. 21: 7492. https://doi.org/10.3390/ma15217492
APA StyleQiao, M., Wu, J., Gao, N., Shan, G., Shen, F., Chen, J., & Zhu, B. (2022). Preparation and Properties of Different Polyether-Type Defoamers for Concrete. Materials, 15(21), 7492. https://doi.org/10.3390/ma15217492