Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication Process
2.2. Sample Characterization
3. Results and Discussion
3.1. XPS Analysis
3.2. TEM Analysis
3.3. SEM Analysis
3.4. Discussion of the Ion-Induced Processes
3.5. UV–Vis Spectroscopy and SERS Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatarkin, D.E.; Yakubovsky, D.I.; Ermolaev, G.A.; Stebunov, Y.V.; Voronov, A.A.; Arsenin, A.V.; Volkov, V.S.; Novikov, S.M. Surface-Enhanced Raman Spectroscopy on Hybrid Graphene/Gold Substrates near the Percolation Threshold. Nanomaterials 2020, 10, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chongdar, S.; Bhattacharjee, S.; Azad, S.; Bal, R.; Bhaumik, A. Selective N-Formylation of Amines Catalysed by Ag NPs Festooned over Amine Functionalized SBA-15 Utilizing CO2 as C1 Source. Mol. Catal. 2021, 516, 111978. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, W.; Chen, Z.; Pors, A.; Wang, Z.; Bozhevolnyi, S.I. Gap-Plasmon Based Broadband Absorbers for Enhanced Hot-Electron and Photocurrent Generation. Sci. Rep. 2016, 6, 30650. [Google Scholar] [CrossRef] [Green Version]
- Gramotnev, D.K.; Bozhevolnyi, S.I. Plasmonics beyond the Diffraction Limit. Nat. Photonics 2010, 4, 83–91. [Google Scholar] [CrossRef]
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007; ISBN 978-0-387-33150-8. [Google Scholar]
- Evlyukhin, A.B.; Kuznetsov, A.I.; Novikov, S.M.; Beermann, J.; Reinhardt, C.; Kiyan, R.; Bozhevolnyi, S.I.; Chichkov, B.N. Optical Properties of Spherical Gold Mesoparticles. Appl. Phys. B 2012, 106, 841–848. [Google Scholar] [CrossRef]
- Beermann, J.; Novikov, S.M.; Albrektsen, O.; Nielsen, M.G.; Bozhevolnyi, S.I. Surface-Enhanced Raman Imaging of Fractal Shaped Periodic Metal Nanostructures. J. Opt. Soc. Am. B 2009, 26, 2370–2376. [Google Scholar] [CrossRef] [Green Version]
- Ringe, E.; McMahon, J.M.; Sohn, K.; Cobley, C.; Xia, Y.; Huang, J.; Schatz, G.C.; Marks, L.D.; Van Duyne, R.P. Unraveling the Effects of Size, Composition, and Substrate on the Localized Surface Plasmon Resonance Frequencies of Gold and Silver Nanocubes: A Systematic Single-Particle Approach. J. Phys. Chem. C 2010, 114, 12511–12516. [Google Scholar] [CrossRef]
- Wang, X.-M.; Li, X.; Liu, W.-H.; Han, C.-Y.; Wang, X.-L. Gas Sensor Based on Surface Enhanced Raman Scattering. Materials 2021, 14, 388. [Google Scholar] [CrossRef]
- Banerjee, D.; Akkanaboina, M.; Ghosh, S.; Soma, V.R. Picosecond Bessel Beam Fabricated Pure, Gold-Coated Silver Nanostructures for Trace-Level Sensing of Multiple Explosives and Hazardous Molecules. Materials 2022, 15, 4155. [Google Scholar] [CrossRef]
- Vishnupriya, S.; Chaudhari, K.; Jagannathan, R.; Pradeep, T. Single-Cell Investigations of Silver Nanoparticle–Bacteria Interactions. Part. Part. Syst. Charact. 2013, 30, 1056–1062. [Google Scholar] [CrossRef]
- Brazhe, N.A.; Evlyukhin, A.B.; Goodilin, E.A.; Semenova, A.A.; Novikov, S.M.; Bozhevolnyi, S.I.; Chichkov, B.N.; Sarycheva, A.S.; Baizhumanov, A.A.; Nikelshparg, E.I.; et al. Probing Cytochrome c in Living Mitochondria with Surface-Enhanced Raman Spectroscopy. Sci. Rep. 2015, 5, 13793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El barghouti, M.; Akjouj, A.; Mir, A. Design of Silver Nanoparticles with Graphene Coatings Layers Used for LSPR Biosensor Applications. Vacuum 2020, 180, 109497. [Google Scholar] [CrossRef]
- Adam, R.Z.; Khan, S.B. Antimicrobial Efficacy of Silver Nanoparticles against Candida Albicans. Materials 2022, 15, 5666. [Google Scholar] [CrossRef]
- Streletskiy, O.A.; Zavidovskiy, I.A.; Balabanyan, V.Y.; Tsiskarashvili, A.V. Antibacterial Properties of Modified A-C and Ta-C Coatings: The Effects of the Sp2/Sp3 Ratio, Oxidation, Nitridation, and Silver Incorporation. Appl. Phys. A 2022, 128, 929. [Google Scholar] [CrossRef]
- Naganthran, A.; Verasoundarapandian, G.; Khalid, F.E.; Masarudin, M.J.; Zulkharnain, A.; Nawawi, N.M.; Karim, M.; Che Abdullah, C.A.; Ahmad, S.A. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. Materials 2022, 15, 427. [Google Scholar] [CrossRef] [PubMed]
- Idone, A.; Gulmini, M.; Henry, A.-I.; Casadio, F.; Chang, L.; Appolonia, L.; Duyne, R.P.V.; Shah, N.C. Silver Colloidal Pastes for Dye Analysis of Reference and Historical Textile Fibers Using Direct, Extractionless, Non-Hydrolysis Surface-Enhanced Raman Spectroscopy. Analyst 2013, 138, 5895–5903. [Google Scholar] [CrossRef]
- Novikov, S.M.; Popok, V.N.; Evlyukhin, A.B.; Hanif, M.; Morgen, P.; Fiutowski, J.; Beermann, J.; Rubahn, H.-G.; Bozhevolnyi, S.I. Highly Stable Monocrystalline Silver Clusters for Plasmonic Applications. Langmuir 2017, 33, 6062–6070. [Google Scholar] [CrossRef]
- Pastoriza-Santos, I.; Liz-Marzán, L.M. Colloidal Silver Nanoplates. State of the Art and Future Challenges. J. Mater. Chem. 2008, 18, 1724–1737. [Google Scholar] [CrossRef]
- Zuo, W.; Pelenovich, V.; Tolstogouzov, A.; Zhang, R.; Zeng, X.; Abudouwufu, T.; Zhang, X.; Fu, D. Direct Ion-Beam Deposition of Ag Nanoparticles Using a Solid-State Silver Ion Source. Vacuum 2021, 183, 109846. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.-Y.; Yamaguchi, K.; Tanemura, M.; Huang, Z.; Jiang, D.; Chen, Y.; Zhou, F.; Nogami, M. Controlled Fabrication of Silver Nanoneedles Array for SERS and Their Application in Rapid Detection of Narcotics. Nanoscale 2012, 4, 2663–2669. [Google Scholar] [CrossRef] [PubMed]
- Scuderi, M.; Esposito, M.; Todisco, F.; Simeone, D.; Tarantini, I.; Marco, L.D.; Giorgi, M.D.; Nicotra, G.; Carbone, L.; Sanvitto, D.; et al. Nanoscale Study of the Tarnishing Process in Electron Beam Lithography-Fabricated Silver Nanoparticles for Plasmonic Applications. Available online: https://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.6b03963 (accessed on 28 March 2022).
- Singh, U.B.; Agarwal, D.C.; Khan, S.A.; Mohapatra, S.; Tripathi, A.; Avasthi, D.K. A Study on the Formation of Ag Nanoparticles on the Surface and Catcher by Ion Beam Irradiation of Ag Thin Films. J. Phys. D Appl. Phys. 2012, 45, 445304. [Google Scholar] [CrossRef]
- Hartmann, H.; Popok, V.N.; Barke, I.; von Oeynhausen, V.; Meiwes-Broer, K.-H. Design and Capabilities of an Experimental Setup Based on Magnetron Sputtering for Formation and Deposition of Size-Selected Metal Clusters on Ultra-Clean Surfaces. Rev. Sci. Instrum. 2012, 83, 073304. [Google Scholar] [CrossRef] [PubMed]
- Le Bris, A.; Maloum, F.; Teisseire, J.; Sorin, F. Self-Organized Ordered Silver Nanoparticle Arrays Obtained by Solid State Dewetting. Appl. Phys. Lett. 2014, 105, 203102. [Google Scholar] [CrossRef]
- Singh, U.B.; Agarwal, D.C.; Khan, S.A.; Kumar, M.; Tripathi, A.; Singhal, R.; Panigrahi, B.K.; Avasthi, D.K. Engineering of Hydrophilic and Plasmonic Properties of Ag Thin Film by Atom Beam Irradiation. Appl. Surf. Sci. 2011, 258, 1464–1469. [Google Scholar] [CrossRef]
- Simonot, L.; Chabanais, F.; Rousselet, S.; Pailloux, F.; Camelio, S.; Babonneau, D. Evolution of Plasmonic Nanostructures under Ultra-Low-Energy Ion Bombardment. Appl. Surf. Sci. 2021, 544, 148672. [Google Scholar] [CrossRef]
- Kamaliya, B.; Mote, R.G.; Aslam, M.; Fu, J. Improved Enhancement Factor for SERS Using Broad Ion Beam Induced Self-Organized Gold Nanocones. MRS Adv. 2019, 4, 697–703. [Google Scholar] [CrossRef]
- Prakash, J.; Wijesundera, D.N.; Rajapaksa, I.; Chu, W.-K. Ion Beam Nanoengineering of Surfaces for Molecular Detection Using Surface Enhanced Raman Scattering. Mol. Syst. Des. Eng. 2022, 7, 411–421. [Google Scholar] [CrossRef]
- Samodelova, M.V.; Kapitanova, O.O.; Meshcheryakova, N.F.; Novikov, S.M.; Yarenkov, N.R.; Streletskii, O.A.; Yakubovsky, D.I.; Grabovenko, F.I.; Zhdanov, G.A.; Arsenin, A.V.; et al. Model of the SARS-CoV-2 Virus for Development of a DNA-Modified, Surface-Enhanced Raman Spectroscopy Sensor with a Novel Hybrid Plasmonic Platform in Sandwich Mode. Biosensors 2022, 12, 768. [Google Scholar] [CrossRef]
- Liu, X.; Guo, J.; Li, Y.; Wang, B.; Yang, S.; Chen, W.; Wu, X.; Guo, J.; Ma, X. SERS Substrate Fabrication for Biochemical Sensing: Towards Point-of-Care Diagnostics. J. Mater. Chem. B 2021, 9, 8378–8388. [Google Scholar] [CrossRef]
- Perumal, J.; Wang, Y.; Ebrahim Attia, A.B.; Dinish, U.S.; Olivo, M. Towards a Point-of-Care SERS Sensor for Biomedical and Agri-Food Analysis Applications: A Review of Recent Advancements. Nanoscale 2021, 13, 553–580. [Google Scholar] [CrossRef] [PubMed]
- Antad, V.; Simonot, L.; Babonneau, D. Influence of Low-Energy Plasma Annealing on Structural and Optical Properties of Silver Nanoclusters Grown by Magnetron Sputtering Deposition. J. Nanopart. Res. 2014, 16, 2328. [Google Scholar] [CrossRef]
- Antad, V.; Simonot, L.; Babonneau, D. Tuning the Surface Plasmon Resonance of Silver Nanoclusters by Oxygen Exposure and Low-Energy Plasma Annealing. Nanotechnology 2013, 24, 045606. [Google Scholar] [CrossRef] [PubMed]
- Zavidovskiy, I.A.; Streletskiy, O.A.; Nishchak, O.Y.; Haidarov, A.A.; Pavlikov, A.V. The Influence of Ion Assistance Energy on Structural and Optical Properties of Carbon-Silver Nanocomposites. Thin Solid Films 2021, 738, 138966. [Google Scholar] [CrossRef]
- Niu, C.; Han, J.; Hu, S.; Song, X.; Long, W.; Liu, D.; Wang, G. Surface Modification and Structure Evolution of Aluminum under Argon Ion Bombardment. Appl. Surf. Sci. 2021, 536, 147819. [Google Scholar] [CrossRef]
- Streletskiy, O.A.; Zavidovskiy, I.A.; Nischak, O.Y.; Haidarov, A.A. Size Control of Silver Nanoclusters during Ion-Assisted Pulse-Plasma Deposition of Carbon-Silver Composite Thin Films. Vacuum 2020, 175, 109286. [Google Scholar] [CrossRef]
- He, L.B.; Wang, Y.L.; Xie, X.; Han, M.; Song, F.Q.; Wang, B.J.; Chen, W.L.; Xu, H.X.; Sun, L.T. Systematic Investigation of the SERS Efficiency and SERS Hotspots in Gas-Phase Deposited Ag Nanoparticle Assemblies. Phys. Chem. Chem. Phys. 2017, 19, 5091–5101. [Google Scholar] [CrossRef]
- Zavidovskii, I.A.; Nishchak, O.Y.; Savchenko, N.F.; Streletskii, O.A. Effect of Low-Energy Ion Assistance on the Structure and Optical Absorption of a-CH:Ag Composite Coatings. J. Exp. Theor. Phys. 2022, 134, 682–692. [Google Scholar] [CrossRef]
- Klimmer, A.; Ziemann, P.; Biskupek, J.; Kaiser, U.; Flesch, M. Size-Dependent Effect of Ion Bombardment on Au Nanoparticles on Top of Various Substrates: Thermodynamically Dominated Capillary Forces versus Sputtering. Phys. Rev. B 2009, 79, 155427. [Google Scholar] [CrossRef]
- Murty, M.V.R. Sputtering: The Material Erosion Tool. Surf. Sci. 2002, 500, 523–544. [Google Scholar] [CrossRef]
- Resta, V.; Peláez, R.J.; Afonso, C.N. Importance of Ion Bombardment during Coverage of Au Nanoparticles on Their Structural Features and Optical Response. J. Appl. Phys. 2014, 115, 124303. [Google Scholar] [CrossRef] [Green Version]
- Satpati, B.; Satyam, P.V.; Som, T.; Dev, B.N. Ion-Beam-Induced Embedded Nanostructures and Nanoscale Mixing. J. Appl. Phys. 2004, 96, 5212–5216. [Google Scholar] [CrossRef]
- Fu, C.; Zeng, X.; Sun, R.; Xu, J.-B.; Wong, C.-P. Facile Preparation of Silver Nanoparticles Decorated Boron Nitride Nanotube Hybrids. In Proceedings of the 2018 19th International Conference on Electronic Packaging Technology (ICEPT), Shanghai, China, 8–11 August 2018; pp. 496–500. [Google Scholar]
- Han, Y.; Lupitskyy, R.; Chou, T.-M.; Stafford, C.M.; Du, H.; Sukhishvili, S. Effect of Oxidation on Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles: A Quantitative Correlation. Anal. Chem. 2011, 83, 5873–5880. [Google Scholar] [CrossRef] [PubMed]
- Boronin, A.I.; Koscheev, S.V.; Zhidomirov, G.M. XPS and UPS Study of Oxygen States on Silver. J. Electron Spectrosc. Relat. Phenom. 1998, 96, 43–51. [Google Scholar] [CrossRef]
- Tabakman, S.M.; Chen, Z.; Casalongue, H.S.; Wang, H.; Dai, H. A New Approach to Solution-Phase Gold Seeding for SERS Substrates. Small 2011, 7, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Babich, E.; Scherbak, S.; Asonkeng, F.; Maurer, T.; Lipovskii, A. Hot Spot Statistics and SERS Performance of Self-Assembled Silver Nanoisland Films. Opt. Mater. Express OME 2019, 9, 4090–4096. [Google Scholar] [CrossRef]
- Shanthil, M.; Thomas, R.; Swathi, R.S.; George Thomas, K. Ag@SiO2 Core–Shell Nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation. J. Phys. Chem. Lett. 2012, 3, 1459–1464. [Google Scholar] [CrossRef]
- Marinov, M. Effect of Ion Bombardment on the Initial Stages of Thin Film Growth. Thin Solid Films 1977, 46, 267–274. [Google Scholar] [CrossRef]
- Asanithi, P.; Chaiyakun, S.; Limsuwan, P. Growth of Silver Nanoparticles by DC Magnetron Sputtering. J. Nanomater. 2012, 2012, 79. [Google Scholar] [CrossRef] [Green Version]
- CEGEO; Saint-Cyr, B.; Szarf, K.; Voivret, C.; Azéma, E.; Richefeu, V.; Delenne, J.-Y.; Combe, G.; Nouguier-Lehon, C.; Villard, P.; et al. Particle Shape Dependence in 2D Granular Media. EPL 2012, 98, 44008. [Google Scholar] [CrossRef]
- Dobrev, D. Ion-Beam-Induced Texture Formation in Vacuum-Condensed Thin Metal Films. Thin Solid Films 1982, 92, 41–53. [Google Scholar] [CrossRef]
- Streletskiy, O.A.; Zavidovskiy, I.A.; Nischak, O.Y.; Dvoryak, S.V. Electrical Conductivity and Structural Properties of a-C:N Films Deposited by Ion-Assisted Pulse-Arc Sputtering. Thin Solid Films 2020, 701, 137948. [Google Scholar] [CrossRef]
- Aumayr, F.; Varga, P.; Winter, H.P. Potential Sputtering: Desorption from Insulator Surfaces by Impact of Slow Multicharged Ions. Int. J. Mass Spectrom. 1999, 192, 415–424. [Google Scholar] [CrossRef]
- Sygusch, J.; Rudolph, M. A Contribution to Wettability and Wetting Characterisation of Ultrafine Particles with Varying Shape and Degree of Hydrophobization. Appl. Surf. Sci. 2021, 566, 150725. [Google Scholar] [CrossRef]
- Kashchiev, D. Nucleation: Basic Theory with Applications; Butterworth Heinemann; Elsevier: Amsterdam, The Netherlands, 2000; ISBN 978-0-7506-4682-6. [Google Scholar]
- Vasiliev, I.; Medasani, B. Surface Properties of Silver and Aluminum Nanoclusters. In Proceedings of the SPIE Proceedings, San Jose, CA, USA, 7 February 2008; Volume 6902, p. 690207. [Google Scholar] [CrossRef]
- Janczuk, B.; Zdziennicka, A. A Study on the Components of Surface Free Energy of Quartz from Contact Angle Measurements. J. Mater. Sci. 1994, 29, 3559–3564. [Google Scholar] [CrossRef]
- González-Martín, M.L.; Jańczuk, B.; Labajos-Broncano, L.; Bruque, J.M.; González-García, C.M. Analysis of the Silica Surface Free Energy by the Imbibition Technique. J. Colloid Interface Sci. 2001, 240, 467–472. [Google Scholar] [CrossRef]
- Zhao, G.; Shen, W.; Jeong, E.; Lee, S.-G.; Yu, S.M.; Bae, T.-S.; Lee, G.-H.; Han, S.Z.; Tang, J.; Choi, E.-A.; et al. Ultrathin Silver Film Electrodes with Ultralow Optical and Electrical Losses for Flexible Organic Photovoltaics. ACS Appl. Mater. Interfaces 2018, 10, 27510–27520. [Google Scholar] [CrossRef]
- Luo, J.; Zeng, M.; Peng, B.; Tang, Y.; Zhang, L.; Wang, P.; He, L.; Huang, D.; Wang, L.; Wang, X.; et al. Electrostatic-Driven Dynamic Jamming of 2D Nanoparticles at Interfaces for Controlled Molecular Diffusion. Angew. Chem. 2018, 130, 11926–11931. [Google Scholar] [CrossRef]
- Bohlmark, J.; Östbye, M.; Lattemann, M.; Ljungcrantz, H.; Rosell, T.; Helmersson, U. Guiding the Deposition Flux in an Ionized Magnetron Discharge. Thin Solid Films 2006, 515, 1928–1931. [Google Scholar] [CrossRef]
- Hervieu, Y.Y. Effective Diffusion Length and Elementary Surface Processes in the Concurrent Growth of Nanowires and 2D Layers. J. Cryst. Growth 2018, 493, 1–7. [Google Scholar] [CrossRef]
- Lee, S.C.; Brueck, S.R.J. Nanoscale Patterned Growth Assisted by Surface Out-Diffusion of Adatoms from Amorphous Mask Films in Molecular Beam Epitaxy. Cryst. Growth Des. 2016, 16, 3669–3676. [Google Scholar] [CrossRef]
- Lin, N.; Payer, D.; Dmitriev, A.; Strunskus, T.; Wöll, C.; Barth, J.V.; Kern, K. Two-Dimensional Adatom Gas Bestowing Dynamic Heterogeneity on Surfaces. Angew. Chem. 2005, 117, 1512–1515. [Google Scholar] [CrossRef]
- Spirina, A.A.; Nastovjak, A.G.; Shwartz, N.L. Influence of AIIIBv ion-induced on Congruent Temperature under Langmuir Evaporation Conditions. In Proceedings of the 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), Erlagol (Altai Republic), Russia, 29 June–3 July 2017; pp. 22–26. [Google Scholar]
- Takagi, T. Ion–Surface Interactions during Thin Film Deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 1998, 2, 382. [Google Scholar] [CrossRef]
- Seebauer, E.G.; Allen, C.E. Estimating Surface Diffusion Coefficients. Prog. Surf. Sci. 1995, 49, 265–330. [Google Scholar] [CrossRef]
- Flötotto, D.; Wang, Z.M.; Jeurgens, L.P.H.; Bischoff, E.; Mittemeijer, E.J. Effect of Adatom Surface Diffusivity on Microstructure and Intrinsic Stress Evolutions during Ag Film Growth. J. Appl. Phys. 2012, 112, 043503. [Google Scholar] [CrossRef] [Green Version]
- Le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoin, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Starowicz, Z.; Wojnarowska-Nowak, R.; Ozga, P.; Sheregii, E.M. The Tuning of the Plasmon Resonance of the Metal Nanoparticles in Terms of the SERS Effect. Colloid Polym. Sci. 2018, 296, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Kleinman, S.L.; Frontiera, R.R.; Henry, A.-I.; Dieringer, J.A.; Duyne, R.P.V. Creating, Characterizing, and Controlling Chemistry with SERS Hot Spots. Phys. Chem. Chem. Phys. 2012, 15, 21–36. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Streletskiy, O.; Zavidovskiy, I.; Yakubovsky, D.; Doroshina, N.; Syuy, A.; Lebedinskij, Y.; Markeev, A.; Arsenin, A.; Volkov, V.; Novikov, S. Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation. Materials 2022, 15, 7721. https://doi.org/10.3390/ma15217721
Streletskiy O, Zavidovskiy I, Yakubovsky D, Doroshina N, Syuy A, Lebedinskij Y, Markeev A, Arsenin A, Volkov V, Novikov S. Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation. Materials. 2022; 15(21):7721. https://doi.org/10.3390/ma15217721
Chicago/Turabian StyleStreletskiy, Oleg, Ilya Zavidovskiy, Dmitry Yakubovsky, Natalia Doroshina, Alexander Syuy, Yury Lebedinskij, Andrey Markeev, Aleksey Arsenin, Valentyn Volkov, and Sergey Novikov. 2022. "Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation" Materials 15, no. 21: 7721. https://doi.org/10.3390/ma15217721
APA StyleStreletskiy, O., Zavidovskiy, I., Yakubovsky, D., Doroshina, N., Syuy, A., Lebedinskij, Y., Markeev, A., Arsenin, A., Volkov, V., & Novikov, S. (2022). Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation. Materials, 15(21), 7721. https://doi.org/10.3390/ma15217721