A Novel Technique for the Preparation of Iron Carbide and Carbon Concentrate from Blast Furnace Dust
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental
2.2.1. Carburization Roasting/Magnetic Separation/Acid Leaching Process
2.2.2. Characterization
3. Results and Discussion
3.1. Preparation of Iron Carbide
3.1.1. Effect of Na2SO4
3.1.2. Effect of Carburization Temperature
3.1.3. Effect of Carburization Time
3.2. Preparation of Carbon Concentrate
Effect of Acetic Acid Concentration
3.3. Product Analyses
4. Conclusions
- (1)
- The carburization roasting/magnetic separation/acid leaching process was a highly effective technology to treat BF dust and it suitably recovered Fe and C. An EAF burden assaying 80.79% Fe and 7.63% C with a corresponding iron recovery rate of 87.26% and a carbon concentrate assaying 67.06% C with a corresponding carbon recovery rate of 81.23% were prepared by the carburization of BF dust pellet at 700 °C for 150 min with the addition of 20% Na2SO4, followed by magnetic separation and acid leaching.
- (2)
- Magnetic separation and acid leaching were useful for purifying the iron carbide and carbon concentrate. Magnetic separation treatment can effectively separate iron carbide from gangue. Acid leaching can usefully treat magnetic separation tailing. Carbon can be separated from gangue using acid leaching treatment.
- (3)
- Na2SO4 additive in BF dust was a feasible measure to enhance the separation efficiency among iron carbide, carbon, and gangue. The study indicates that Na2SO4 can enhance the carburization index, enlarge the iron carbide particle size, and improve the embed embedded relationship of iron carbide and gangue, which dramatically improves the separation efficiency of iron carbide and gangue in magnetic separation. In addition, gangue that cannot dissolve in acid translates to gangue that is dissolvable in acid by the sodium modification reactions, so it significantly promotes the separation efficiency of carbon and gangue during the acid leaching process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pickles, C.A. Thermodynamic analysis of the selective chlorination of electric arc furnace dust. J. Hazard. Mater. 2009, 166, 1030–1042. [Google Scholar] [CrossRef]
- Yu, Y.W.; Wang, Z.M.; Wei, H.; Li, Y.; Song, Q.S.; Zheng, Z.J. Separation and recovery of potassium chloride from sinter dust of a steel plant. Ironmak. Steelmak. 2019, 46, 193–198. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, S.F.; Sher, F.; Chen, J.B.; Xin, Y.T.; You, Z.X.; Wen, L.Y.; Hu, M.L.; Qiu, G.B. A Review on Recycling and Reutilization of Blast Furnace Dust as a Secondary Resource. J. Sust. Metall. 2021, 7, 340–357. [Google Scholar] [CrossRef]
- Shi, R.M.; Wu, H.; Liu, H.; Wang, B.X.; She, Y.; Zou, C.; Zheng, J.F.; Gao, Q. Roasting and leaching process of iron sulfate to separate zinc and iron from blast furnace dust. Korean J. Chem. Eng. 2022, 39, 1339–1349. [Google Scholar] [CrossRef]
- Ye, L.; Peng, Z.W.; Ye, Q.; Wang, L.C.; Augustine, R.; Perez, M.; Liu, Y.; Liu, M.D.; Tang, H.M.; Rao, M.J.; et al. Toward environmentally friendly direct reduced iron production: A novel route of comprehensive utilization of blast furnace dust and electric arc furnace dust. Waste Manag. 2021, 135, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Lanzerstorfer, C.; Bamberger-Strassmayr, B.; Pilz, K. Recycling of Blast Furnace Dust in the Iron Ore Sintering Process: Investigation of Coke Breeze Substitution and the Influence on Off-gas Emissions. ISIJ Int. 2015, 55, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.L.; Wang, X.L.; Zhang, J.L. Iron and Steel Metallurgy (Ironmaking); Metallurgical Industry Press: Beijing, China, 2019. [Google Scholar]
- Das, B.; Prakash, S.; Reddy, P.S.R.; Misra, V.N. An overview of utilization of slag and sludge from steel industries. Resour. Conserv. Recycl. 2007, 50, 40–57. [Google Scholar] [CrossRef]
- Reddy, P.S.R.; Biswal, S.K.; Das, B.; Mohapatra, B.K. Recovery of iron and carbon values from iron blast furnace flue dust by beneficiation techniques. Powder Handling Process. 1996, 8, 139–142. [Google Scholar]
- Yan, Y.W.; Chen, Y.S.; Yang, Y.; Zhang, J.; Wang, M.M. The investigation of sorting iron and carbon from the blast furnace gas ash. J. Inner Mong. Univ. Sci. Technol. 2008, 27, 15–18. [Google Scholar]
- Ju, J.R.; Feng, Y.L.; Li, H.R.; Zhang, Q. Study of recycling blast furnace dust by magnetization roasting with straw charcoal as reductant. Physicochem. Probl. Miner. Process. 2022, 58, 149265. [Google Scholar] [CrossRef]
- Meyer, G.; Vopel, K.H.; Janssen, W. Investigations of utilization of dusts and sludges from waste-gas cleaning systems of blast-furnaces and bop steelmaking plants in rotary kiln. Stahl Eisen 1976, 96, 1228–1233. [Google Scholar]
- Ibaraki, T.; Oda, H. Dust recycling technology by the rotary hearth furnace at Nippon Steel’s Kimitsu Works. Rev. Metall. 2002, 99, 809–818. [Google Scholar] [CrossRef]
- Liu, X.L.; Liu, Z.J.; Zhang, J.L.; Xing, X.D. Recovery of Iron and Zinc from Blast Furnace Dust Using Iron-Bath Reduction. High Temp. Mater. Proc. 2019, 38, 767–772. [Google Scholar] [CrossRef]
- Gao, J.T.; Li, S.Q.; Zhang, Y.L.; Zhang, Y.T.; Chen, P.Y.; Wang, Y.G. Separation technology of Fe and Zn from blast furnace dust at non-molten state. J. Univ. Sci. Technol. Beijing 2012, 34, 1268–1274. [Google Scholar]
- Wang, Z.C.; Han, H.T.; Liang, Z.K.; Yi, L.Y.; Lu, B. Effect of grinding process on the oxidation of metallic iron in reduced pellets and the followed magnetic separation. Met. Mine 2019, 48, 59–64. [Google Scholar]
- Wang, D.Y.; Liu, C.J.; Jiang, M.F. New Steelmaking Raw Material-Characterization and Preparation Techniques of Iron Carbide; Science Press: Beijing, China, 2012. [Google Scholar]
- Halli, P.; Hamuyuni, J.; Revitzer, H.; Lundstrom, M. Selection of leaching media for metal dissolution from electric arc furnace dust. J. Clean. Prod. 2017, 164, 265–276. [Google Scholar] [CrossRef]
- Ye, Z.T.; Zhang, P.; Lei, X.; Wang, X.B.; Zhao, N.; Yang, H. Iron carbides and nitrides: Ancient materials with novel prospects. Chem. Eur. J. 2018, 24, 8922–8940. [Google Scholar] [CrossRef]
- Wang, D.Z.; Qiu, G.Z.; Hu, Y.H. Minerals Processing; Science Press: Beijing, China, 2005. [Google Scholar]
- Chen, D.; Lv, Y.N.; Guo, H.W.; Li, P.; Yan, B.J. Function Mechanism of Sodium Sulfate Additive on Iron Carbide Preparation with Low-Grade Siderite. Metall. Mater. Trans. B 2021, 52, 689–699. [Google Scholar] [CrossRef]
- Chen, D.; Chen, S.; Guo, H.; Zhao, W.; Li, P.; Yan, B.; Zhang, S. A novel metallurgical technique for the preparation of soft magnetic iron carbide from low-grade siderite. J. Alloy. Compd. 2022, 928, 167186. [Google Scholar] [CrossRef]
- Chen, D.; Guo, H.W.; Lv, Y.A.; Li, P.; Yan, B.J.; Zhao, W. Green technology-based utilization of refractory siderite ores to prepare electric arc furnace burden. Steel Res. Int. 2021, 92, 2100046. [Google Scholar] [CrossRef]
- Chen, D.; Guo, H.; Zhang, S.; Lv, Y.; Tang, J. Carburization behavior of siderite pellets in CO–CO2–H2 mixtures. Steel Res. Int. 2019, 90, 1800433. [Google Scholar] [CrossRef]
- Iguchi, Y.; Hori-i, K.; Shibata, T. Kinetics of cementite formation from reduced iron in CO-H2-H2S mixtures under pressurized conditions. ISIJ Int. 2004, 44, 992–998. [Google Scholar] [CrossRef]
- Iguchi, Y.; Hori-i, K.; Shibata, T.; Hayashi, S. Rate of iron carbide formation from reduced iron in CO-H2-H2S mixtures under pressurized conditions. ISIJ Int. 2004, 44, 984–991. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.C.; Jacobs, G.; Davis, B.H.; Cronauer, D.C.; Kropf, A.J.; MarshaW, C.L. Fischer-tropsch synthesis: An in-situ tpr-exafs/xanes investigation of the influence of group i alkali promoters on the local atomic and electronic structure of carburized iron/silica catalysts. J. Phys. Chem. C 2010, 114, 7895–7903. [Google Scholar] [CrossRef]
- Jiang, T. Principle and Technology of Aggomeration of Iron Ores; Central South University Press: Changsha, China, 2016. [Google Scholar]
- Abdrakhimov, A.V.; Abdrakhimova, E.S.; Abdrakhimov, V.Z. Technical properties of roof tiles made of technogenic material with pyrite cinder. Glass Ceram. 2006, 63, 130–132. [Google Scholar] [CrossRef]
TFe | SiO2 | Al2O3 | CaO | MgO | MnO | P | S | C | LOI * |
---|---|---|---|---|---|---|---|---|---|
32.25 | 6.03 | 2.95 | 4.03 | 0.87 | 0.25 | 0.05 | 0.15 | 34.00 | 37.25 |
Composition | Fe | C | O | Al | Si | Mg | Ca | K | Na | S |
---|---|---|---|---|---|---|---|---|---|---|
Spot F | 84.2 | 15.8 | / | / | / | / | / | / | / | / |
Spot H | 2.7 | 89.9 | 6.3 | / | 0.2 | / | / | 0.2 | 0.3 | 0.4 |
Spot I | 9.7 | 38.4 | 32.8 | 5.6 | 7.0 | 1.9 | / | / | 4.6 | / |
Spot J | 36.8 | 31.5 | 21.6 | / | 1.8 | / | 3.3 | / | 1.2 | 3.7 |
Spot K | 3.4 | 46.9 | 37.8 | 1.4 | 9.7 | / | 0.4 | / | / | 0.4 |
Spot L | / | 73.2 | 20.6 | 2.0 | 2.7 | / | / | 0.6 | 0.5 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Guo, H.; Li, P.; Wu, F.; Lv, Y.; Yan, B.; Zhao, W.; Su, Y. A Novel Technique for the Preparation of Iron Carbide and Carbon Concentrate from Blast Furnace Dust. Materials 2022, 15, 8241. https://doi.org/10.3390/ma15228241
Chen D, Guo H, Li P, Wu F, Lv Y, Yan B, Zhao W, Su Y. A Novel Technique for the Preparation of Iron Carbide and Carbon Concentrate from Blast Furnace Dust. Materials. 2022; 15(22):8241. https://doi.org/10.3390/ma15228241
Chicago/Turabian StyleChen, Dong, Hongwei Guo, Peng Li, Feibao Wu, Yanan Lv, Bingji Yan, Wei Zhao, and Yifan Su. 2022. "A Novel Technique for the Preparation of Iron Carbide and Carbon Concentrate from Blast Furnace Dust" Materials 15, no. 22: 8241. https://doi.org/10.3390/ma15228241
APA StyleChen, D., Guo, H., Li, P., Wu, F., Lv, Y., Yan, B., Zhao, W., & Su, Y. (2022). A Novel Technique for the Preparation of Iron Carbide and Carbon Concentrate from Blast Furnace Dust. Materials, 15(22), 8241. https://doi.org/10.3390/ma15228241