Near-Infrared Artificial Optical Synapse Based on the P(VDF-TrFE)-Coated InAs Nanowire Field-Effect Transistor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanowire Growth and Device Fabrication
2.2. Characterization and Measurement
3. Results and Discussion
3.1. The Pristine InAs NW Device Optoelectronic Properties
3.2. The P(VDF-TrFE)-Coated InAs NW Device Optoelectronic Properties
3.3. Optical Synaptic Behavior Based on P(VDF-TrFE)-Coated InAs NW FET
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.; Guo, C.; Nakamura, Y.; et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 2014, 345, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Hahnloser, R.H.R.; Sarpeshkar, R.; Mahowald, M.A.; Douglas, R.J.; Seung, H.S. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 2000, 405, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Markovic, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499–510. [Google Scholar] [CrossRef]
- Feldmann, J.; Youngblood, N.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H.P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 2019, 569, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.L.; Mohseni, H. Emerging technologies for high performance infrared detectors. Nanophotonics 2018, 7, 169–197. [Google Scholar] [CrossRef] [Green Version]
- Benyahia, K.; Djeffal, F.; Ferhati, H.; Bendjerad, A.; Benhaya, A.; Saidi, A. Self-powered photodetector with improved and broadband multispectral photoresponsivity based on ZnO-ZnS composite. J. Alloy. Compd. 2021, 859, 158242. [Google Scholar] [CrossRef]
- Farah, S.E.; Ferhati, H.; Dibi, Z.; Djeffal, F. Performance analysis of broadband Mid-IR graphene-phototransistor using strained black phosphorus sensing gate: DFT-NEGF investigation. Micro Nanostruct. 2022, 163, 107187. [Google Scholar] [CrossRef]
- Shastri, B.J.; Tait, A.N.; de Lima, T.F.; Pernice, W.H.P.; Bhaskaran, H.; Wright, C.D.; Prucnal, P.R. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 2021, 15, 102–114. [Google Scholar] [CrossRef]
- Ilyas, N.; Wang, J.; Li, C.; Li, D.; Fu, H.; Gu, D.; Jiang, X.; Liu, F.; Jiang, Y.; Li, W. Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv. Funct. Mater. 2022, 32, 2110976. [Google Scholar] [CrossRef]
- Yu, J.J.; Liang, L.Y.; Hu, L.X.; Duan, H.X.; Wu, W.H.; Zhang, H.L.; Gao, J.H.; Zhuge, F.; Chang, T.C.; Cao, H.T. Optoelectronic neuromorphic thin-film transistors capable of selective attention and with ultra-low power dissipation. Nano Energy 2019, 62, 772–780. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Kong, L.-A.; Fu, Y.; Gao, Y.; Sun, J. Deep-ultraviolet-triggered neuromorphic functions in In-Zn-O phototransistors. Appl. Phys. Lett. 2018, 113, 151101. [Google Scholar] [CrossRef]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Ielmini, D.; Lacaita, A.L. Phase change materials in non-volatile storage. Mater. Today 2011, 14, 600–607. [Google Scholar] [CrossRef]
- Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Mahmoodi, M.R.; Shi, Y.; Mahata, C.; Yuan, B.; Liang, X.; Wen, C.; Hui, F.; Akinwande, D.; Strukov, D.B.; et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 2020, 3, 638–645. [Google Scholar] [CrossRef]
- Kim, M.-K.; Lee, J.-S. Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in hafnia-based oxide-semiconductor transistors. Adv. Mater. 2020, 32, 1907826. [Google Scholar] [CrossRef]
- Li, X.; Li, S.; Tang, B.; Liao, J.; Chen, Q. A Vis-SWIR photonic synapse with low power consumption based on WSe2/In2Se3 ferroelectric heterostructure. Adv. Electron. Mater. 2022, 8, 2200343. [Google Scholar] [CrossRef]
- Xue, F.; He, X.; Liu, W.; Periyanagounder, D.; Zhang, C.; Chen, M.; Lin, C.-H.; Luo, L.; Yengel, E.; Tung, V.; et al. Optoelectronic ferroelectric domain-wall memories made from a single van Der Waals ferroelectric. Adv. Funct. Mater. 2020, 30, 2004206. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Q.; Ni, Z.; Li, Q.; Liu, H.; Yang, Y.; Wang, L.; Ran, Y.; Guo, Y.; Hu, W.; et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 2018, 30, 1803961. [Google Scholar] [CrossRef]
- Kumar, M.; Abbas, S.; Kim, J. All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 2018, 10, 34370–34376. [Google Scholar] [CrossRef]
- Li, B.; Wei, W.; Yan, X.; Zhang, X.; Liu, P.; Luo, Y.; Zheng, J.; Lu, Q.; Lin, Q.; Ren, X. Mimicking synaptic functionality with an InAs nanowire phototransistor. Nanotechnology 2018, 29, 34370–34376. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, M.; Zazpe, R.; Golmar, F.; Stoliar, P.; Llopis, R.; Casanova, F.; Hueso, L.E. A light-controlled resistive switching memory. Adv. Mater. 2012, 24, 2496–2500. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, J.; Ye, W.; She, D.; Chen, J.; Lv, Z.; Roy, V.A.L.; Li, H.; Zhou, K.; Yang, Q.; et al. Near-infrared-irradiation-mediated synaptic behavior from tunable charge-trapping dynamics. Adv. Electron. Mater. 2020, 6, 1900765. [Google Scholar] [CrossRef]
- Tian, H.; Zhao, L.; Wang, X.; Yeh, Y.-W.; Yao, N.; Rand, B.P.; Ren, T.-L. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano 2017, 11, 12247–12256. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, B.; Wang, B.; Bi, R.; Li, H.; Tu, K.; Chen, G.; Li, Z.; Huang, R.; Li, M. Complementary photo-synapses based on light-stimulated porphyrin-coated silicon nanowires field-effect transistors (LPSNFET). Small 2021, 17, 2101434. [Google Scholar] [CrossRef]
- Shen, C.; Gao, X.; Chen, C.; Ren, S.; Xu, J.-L.; Xia, Y.-D.; Wang, S.-D. ZnO nanowire optoelectronic synapse for neuromorphic computing. Nanotechnology 2022, 33, 65205. [Google Scholar] [CrossRef]
- Yin, L.; Han, C.; Zhang, Q.; Ni, Z.; Zhao, S.; Wang, K.; Li, D.; Xu, M.; Wu, H.; Pi, X.; et al. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy 2019, 63, 103859. [Google Scholar] [CrossRef]
- Tan, H.; Ni, Z.; Peng, W.; Du, S.; Liu, X.; Zhao, S.; Li, W.; Ye, Z.; Xu, M.; Xu, Y.; et al. Broadband optoelectronic synaptic devices based on silicon nanocrystals for neuromorphic computing. Nano Energy 2018, 52, 422–430. [Google Scholar] [CrossRef]
- Yang, Y.; He, Y.L.; Nie, S.; Shi, Y.; Wan, Q. Light stimulated IGZO-based electric-double-layer transistors for photoelectric neuromorphic devices. IEEE Electron Device Lett. 2018, 39, 897–900. [Google Scholar] [CrossRef]
- Zhang, H.-S.; Dong, X.-M.; Zhang, Z.-C.; Zhang, Z.-P.; Ban, C.-Y.; Zhou, Z.; Song, C.; Yan, S.-Q.; Xin, Q.; Liu, J.-Q.; et al. Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics. Nat. Commun. 2022, 13, 4996. [Google Scholar] [CrossRef]
- Qin, S.; Wang, F.; Liu, Y.; Wan, Q.; Wang, X.; Xu, Y.; Shi, Y.; Wang, X.; Zhang, R. A light-stimulated synaptic device based on graphene hybrid phototransistor. 2D Mater. 2017, 4, 35022. [Google Scholar] [CrossRef]
- Seo, S.; Jo, S.H.; Kim, S.; Shim, J.; Oh, S.; Kim, J.H.; Heo, K.; Choi, J.W.; Choi, C.; Oh, S.; et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 2018, 9, 5106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Hu, W.; Xie, D.; Yang, J.; He, J.; Gao, Y.; Wan, Q. 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale 2019, 11, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, H.; Tian, M.; Chen, A.; Chen, L.; Pu, D.; Hu, J.; Cao, J.; Li, L.; Xu, X.; et al. Multi-stimuli-responsive synapse based on vertical van der Waals heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 35917–35926. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cheng, Z.; Jiang, B.; Liu, Y.; Zhang, Y.; Yang, F.; Wang, J.; Yu, X.-F.; Chu, P.K.; Ye, C. Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide. ACS Appl. Mater. Interfaces 2021, 13, 30797–30805. [Google Scholar] [CrossRef]
- Maier, P.; Hartmann, F.; Emmerling, M.; Schneider, C.; Kamp, M.; Hoefling, S.; Worschech, L. Electro-photo-sensitive memristor for neuromorphic and arithmetic computing. Phys. Rev. Appl. 2016, 5, 54011. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.L.; Qian, L.; Xie, D.; Lin, Y.X.; Sun, M.X.; Li, W.W.; Ding, L.M.; Ren, T.L.; Palacios, T. Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater. 2019, 29, 1902538. [Google Scholar] [CrossRef]
- Huang, X.; Li, Q.; Shi, W.; Liu, K.; Zhang, Y.; Liu, Y.; Wei, X.; Zhao, Z.; Guo, Y.; Liu, Y. Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system. Small 2021, 17, 2102820. [Google Scholar] [CrossRef]
- Sha, X.; Cao, Y.; Meng, L.; Yao, Z.; Gao, Y.; Zhou, N.; Zhang, Y.; Chu, P.K.; Li, J. Near-infrared photonic artificial synapses based on organic heterojunction phototransistors. Appl. Phys. Lett. 2022, 120, 151103. [Google Scholar] [CrossRef]
- Ni, Y.; Feng, J.; Liu, J.; Yu, H.; Wei, H.; Du, Y.; Liu, L.; Sun, L.; Zhou, J.; Xu, W. An artificial nerve capable of UV-perception, NIR-Vis switchable plasticity modulation, and motion state monitoring. Adv. Sci. 2022, 9, 2102036. [Google Scholar] [CrossRef]
- Mu, B.; Guo, L.; Liao, J.; Xie, P.; Ding, G.; Lv, Z.; Zhou, Y.; Han, S.-T.; Yan, Y. Near-infrared artificial synapses for artificial sensory neuron system. Small 2021, 17, 2103837. [Google Scholar] [CrossRef] [PubMed]
- Zucker, R.S.; Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Fu, M.; Tang, Z.; Zheng, X.; Ji, X.; Wang, X.; Lin, W.; Yang, T.; Chen, Q. Switching from negative to positive photoconductivity toward intrinsic photoelectric response in InAs nanowire. ACS Appl. Mater. Interfaces 2017, 9, 2867–2874. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, F.; Xu, T.; Xia, H.; Xie, R.; Zhou, X.; Ge, X.; Liu, W.; Zhu, Y.; Sun, L.; et al. Slowing hot-electron relaxation in mix-phase nanowires for hot-carrier photovoltaics. Nano Lett. 2021, 21, 7761–7768. [Google Scholar] [CrossRef] [PubMed]
- Zha, C.; Yan, X.; Yuan, X.; Zhang, Y.; Zhang, X. An artificial optoelectronic synapse based on an InAs nanowire phototransistor with negative photoresponse. Opt. Quantum Electron. 2021, 53, 587. [Google Scholar] [CrossRef]
- Jiang, Y.; Shen, R.; Li, T.; Tian, J.; Li, S.; Tan, H.H.; Jagadish, C.; Chen, Q. Enhancing the electrical performance of InAs nanowire field-effect transistors by improving the surface and interface properties by coating with thermally oxidized Y2O3. Nanoscale 2022, 14, 12830–12840. [Google Scholar] [CrossRef]
- Wang, X.; Pan, D.; Sun, M.; Lyu, F.; Zhao, J.; Chen, Q. High-performance room-temperature UV-IR photodetector based on the InAs nanosheet and its wavelength- and intensity-dependent negative photoconductivity. ACS Appl. Mater. Interfaces 2021, 13, 26187–26195. [Google Scholar] [CrossRef]
- Takei, K.; Fang, H.; Kumar, S.B.; Kapadia, R.; Gao, Q.; Madsen, M.; Kim, H.S.; Liu, C.-H.; Chueh, Y.-L.; Plis, E.; et al. Quantum confinement effects in nanoscale-thickness InAs membranes. Nano Lett. 2011, 11, 5008–5012. [Google Scholar] [CrossRef]
- Wunnicke, O. Gate capacitance of back-gated nanowire field-effect transistors. Appl. Phys. Lett. 2006, 89, 83102. [Google Scholar] [CrossRef] [Green Version]
- Dayeh, S.A.; Aplin, D.P.R.; Zhou, X.; Yu, P.K.L.; Yu, E.T.; Wang, D. High electron mobility InAs nanowire field-effect transistors. Small 2007, 3, 326–332. [Google Scholar] [CrossRef]
- Ullah, A.R.; Joyce, H.J.; Tan, H.H.; Jagadish, C.; Micolich, A.P. The influence of atmosphere on the performance of pure-phase WZ and ZB InAs nanowire transistors. Nanotechnology 2017, 28, 454001. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.V.K.; Ajitha, B.; Reddy, Y.A.K.; Sreedhar, A. Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region: A review. Chemosphere 2021, 279, 130473. [Google Scholar] [CrossRef]
- Li, Z.; Allen, J.; Allen, M.; Tan, H.H.; Jagadish, C.; Fu, L. Review on III–V semiconductor single nanowire-based room temperature infrared photodetectors. Materials 2020, 13, 1400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, S.C.; Wang, K.; Ding, Y.; Marmon, J.K.; Bhatt, M.; Zhang, Y.; Zhou, W.; Wang, Z.L. Piezo-phototronic effect enhanced UV/Visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array. ACS Nano 2015, 9, 6419–6427. [Google Scholar] [CrossRef]
- Kind, H.; Yan, H.Q.; Messer, B.; Law, M.; Yang, P.D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158–160. [Google Scholar] [CrossRef]
- Shen, R.; Jiang, Y.F.; Li, X.; Tian, J.M.; Li, S.; Li, T.; Chen, Q. Artificial synapse based on an InAs nanowire field-effect transistor with ferroelectric polymer P(VDF-TrFE) passivation. ACS Appl. Electron. Mater 2022, 4, 5008–5016. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, S.; Wang, Z.; Adamo, G.; Liu, H.; Huang, Y.; Couteau, C.; Soci, C. GaAs/AlGaAs nanowire photodetector. Nano Lett. 2014, 14, 2688–2693. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; Jang, S.; Lee, E.H.; Kang, M.J.; Wang, G.; Kim, T.W. Ultrathin conformable organic artificial synapse for wearable intelligent device applications. ACS Appl. Mater. Interfaces 2019, 11, 1071–1080. [Google Scholar] [CrossRef]
- Murre, J.M.J.; Dros, J. Replication and analysis of Ebbinghaus’ forgetting curve. PLoS ONE 2015, 10, e0120644. [Google Scholar] [CrossRef]
- McGaugh, J.L. Neuroscience-memory-a century of consolidation. Science 2000, 287, 248–251. [Google Scholar] [CrossRef]
- Shao, L.; Wang, H.L.; Yang, Y.; He, Y.L.; Tang, Y.C.; Fang, H.H.; Zhao, J.W.; Xiao, H.S.; Liang, K.; Wei, M.M.; et al. Optoelectronic properties of printed photogating carbon nanotube thin film transistors and their application for light-stimulated neuromorphic devices. ACS Appl. Mater. Interfaces 2019, 11, 12161–12169. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jiang, X.; Ye, W.; Zhang, H.; Zhou, L.; Zhang, F.; She, D.; Zhou, Y.; Han, S.-T. Fully photon modulated heterostructure for neuromorphic computing. Nano Energy 2019, 65, 104000. [Google Scholar] [CrossRef]
- Shrivastava, S.; Lin, Y.-T.; Pattanayak, B.; Pratik, S.; Hsu, C.-C.; Kumar, D.; Lin, A.S.; Tseng, T.-Y. Zn2SnO4 thin film based nonvolatile positive optoelectronic memory for neuromorphic computing. ACS Appl. Electron. Mater. 2022, 4, 1784–1793. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Wang, Z.; Chen, J.; Yang, Q.; Lv, Z.; Zhou, Y.; Zhai, Y.; Li, Z.; Han, S.-T. Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity. Small 2019, 15, 1805431. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.S.; Jeong, J.-S.; Yang, M.K.; Song, J.D.; Lee, Y.T.; Ju, H. Non-volatile memory behavior of interfacial InOx layer in InAs nanowire field-effect transistor for neuromorphic application. Appl. Surf. Sci 2021, 541, 148483. [Google Scholar] [CrossRef]
- He, L.; Li, E.; Yu, R.; Chen, H.; Zhang, G. Multistage photo-synaptic transistor based on the regulation of ferroelectric P(VDF-TrFE). Acta Photonica Sinica 2021, 50, 904002. [Google Scholar]
- Qi, L.; Ruan, S.C.; Zeng, Y.J. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater. 2021, 33, 2005098. [Google Scholar] [CrossRef]
Type | Active Materials | Vds (V) | Ion/Ioff Ratio | Response Wavelength (nm) | R (A/W) | Features * | PPF Index | Ref. |
---|---|---|---|---|---|---|---|---|
Organic | P(IID-BT) | −30 | 3 × 103 | 550, 850 | — | EPSC, PPF, STP/LTP | 200% | [19] |
PEA2SnI4/Y6 | 40 | — | 300–1000 | 200 | EPSC/IPSC, PPF, STM/LTM | 160% | [38] | |
PDPPBTT | −5 | ~103 | 808 | — | EPSC, PPF | ~155% | [39] | |
C8-BTBT/F16CuPc | 0.2 | — | 380, 640, 790 | — | PSC, PPF/PPD, STP/LTP | 100% | [40] | |
Pentacene | −30 | — | 790 | — | EPSC, PPF/PPD, STP/LTP | ~150% | [41] | |
Inorganic | Si nanocrystals | 5 | — | 375–1342 | — | STP/STD, LTP/LTD, STDP | 190% | [27] |
Si nanocrystals | 0.5 | — | 532, 1342, 1870 | — | EPSC, PPF, STP, STDP | 149% | [28] | |
ZnO/PbS QDs | 0.1 | — | 980 | — | PSC, PPD/PPF, SRDP | 14% | [62] | |
α-In2Se3 | 0.1 | — | 650–1800 | — | EPSC, PPF, STP/LTP | 128% | [17] | |
α-In2Se3 | 0.3 | >104 | 900 | — | PPF, STP/LTP | — | [18] | |
MoSe2/Bi2Se3/PMMA | −30 | — | 580–860 | — | PPF/PPD, STP, LTP | 33.1% | [23] | |
MoSe2/Bi2Se3 nanosheets | 0.1 | — | 790 | — | EPSC/IPSC, PPF/PPD, STP/LTP | 33.7% | [64] | |
ITO/Zn2SnO4/ITO | 0.1 | — | 400—800 | 0.52 × 10−6 | EPSC, PPF, LTP | 160% | [63] | |
Graphene oxide | 1 | — | 365—1550 | 0.9 | EPSC, SIDP/SNDP, PPF, STP/LTP | 114% | [30] | |
Titanium trisulfide (TiS3) | 0.2 | ~4 × 102 | 400–800 | — | STDP | — | [35] | |
SWCNT | −0.5 | — | 520–1310 | — | EPSC, LTP | 200% | [61] | |
InAs nanowire | 0.1 | 6 × 103 | 750–1550 | 839.3 | EPSC, PPF, STP/LTP | 160% | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, R.; Jiang, Y.; Li, Z.; Tian, J.; Li, S.; Li, T.; Chen, Q. Near-Infrared Artificial Optical Synapse Based on the P(VDF-TrFE)-Coated InAs Nanowire Field-Effect Transistor. Materials 2022, 15, 8247. https://doi.org/10.3390/ma15228247
Shen R, Jiang Y, Li Z, Tian J, Li S, Li T, Chen Q. Near-Infrared Artificial Optical Synapse Based on the P(VDF-TrFE)-Coated InAs Nanowire Field-Effect Transistor. Materials. 2022; 15(22):8247. https://doi.org/10.3390/ma15228247
Chicago/Turabian StyleShen, Rui, Yifan Jiang, Zhiwei Li, Jiamin Tian, Shuo Li, Tong Li, and Qing Chen. 2022. "Near-Infrared Artificial Optical Synapse Based on the P(VDF-TrFE)-Coated InAs Nanowire Field-Effect Transistor" Materials 15, no. 22: 8247. https://doi.org/10.3390/ma15228247
APA StyleShen, R., Jiang, Y., Li, Z., Tian, J., Li, S., Li, T., & Chen, Q. (2022). Near-Infrared Artificial Optical Synapse Based on the P(VDF-TrFE)-Coated InAs Nanowire Field-Effect Transistor. Materials, 15(22), 8247. https://doi.org/10.3390/ma15228247