Hydroxyapatite Affects the Physicochemical Properties of Contemporary One-Step Self-Etch Adhesives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Manipulation and Preparation of the Adhesives
2.2. Measurement of Adhesives’ pH
2.3. Water Sorption (WS) and Solubility (SL)
2.4. Three-Point Flexural Bending Test
2.5. Scanning Electron Microscope/Energy Dispersive X-ray Spectrometry Analysis
2.6. Statistical Analysis
3. Results
3.1. pH
3.2. Water Sorption (WS) and Solubility (SL)
3.3. Three-Point Flexural Bending Test
3.4. Correlation between the Water Sorption and the Modulus of Elasticity
3.5. SEM/EDS Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Process of Reaction between 10-MDP and Hydroxyapatite
References
- Loomans, B.A.C.; Kreulen, C.M.; Huijs-Visser, H.E.C.E.; Sterenborg, B.A.M.M.; Bronkhorst, E.M.; Huysmans, M.C.D.N.J.M.; Opdam, N.J.M. Clinical performance of full rehabilitations with direct composite in severe tooth wear patients: 3.5 Years results. J. Dent. 2018, 70, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Tyas, M.J.; Anusavice, K.J.; Frencken, J.E.; Mount, G.J. Minimal intervention dentistry—A review. FDI Commission Project 1–97. Int. Dent. J. 2000, 50, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Peumans, M.; De Munck, J.; Mine, A.; Van Meerbeek, B. Clinical effectiveness of contemporary adhesives for the restoration of non-carious cervical lesions. A systematic review. Dent. Mater. 2014, 30, 1089–1103. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Rousson, V.; Hickel, R. Clinical effectiveness of direct anterior restorations--a meta-analysis. Dent. Mater. 2015, 31, 481–495. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Rousson, V. Clinical effectiveness of direct class II restorations—A meta-analysis. J. Adhes. Dent. 2012, 14, 407–431. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Pashley, D.H. Have dentin adhesives become too hydrophilic? J. Can. Dent. Assoc. 2003, 69, 726–731. [Google Scholar] [PubMed]
- Hosaka, K.; Nakajima, M.; Takahashi, M.; Itoh, S.; Ikeda, M.; Tagami, J.; Pashley, D.H. Relationship between mechanical properties of one-step self-etch adhesives and water sorption. Dent. Mater. 2010, 26, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Hosaka, K.; Tagami, J.; Nishitani, Y.; Yoshiyama, M.; Carrilho, M.; Tay, F.R.; Agee, K.A.; Pashley, D.H. Effect of wet vs. dry testing on the mechanical properties of hydrophilic self-etching primer polymers. Eur. J. Oral Sci. 2007, 115, 239–245. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y. The effect of hydroxyapatite presence on the degree of conversion and polymerization rate in a model self-etching adhesive. Dent. Mater. 2012, 28, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Malacarne-Zanon, J.; Pashley, D.H.; Agee, K.A.; Foulger, S.; Alves, M.C.; Breschi, L.; Cadenaro, M.; Garcia, F.P.; Carrilho, M.R. Effects of ethanol addition on the water sorption/solubility and percent conversion of comonomers in model dental adhesives. Dent. Mater. 2009, 25, 1275–1284. [Google Scholar] [CrossRef]
- Hosaka, K.; Kubo, S.; Tichy, A.; Ikeda, M.; Shinkai, K.; Maseki, T.; Rikuta, A.; Sasazaki, H.; Satoh, K.; Fujitani, M.; et al. Clinical effectiveness of direct resin composite restorations bonded using one-step or two-step self-etch adhesive systems: A three-year multicenter study. Dent. Mater. J. 2021, 40, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Hashimoto, M.; Wadgaonkar, B.; Svizero, N.; Carvalho, R.M.; Yiu, C.; Rueggeberg, F.A.; Foulger, S.; Saito, T.; Nishitani, Y.; et al. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 2005, 26, 6449–6459. [Google Scholar] [CrossRef] [PubMed]
- Manuja, N.; Nagpal, R.; Pandit, I.K. Dental adhesion: Mechanism, techniques and durability. J. Clin. Pediatr. Dent. 2012, 36, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Nagakane, K.; Fukuda, R.; Nakayama, Y.; Okazaki, M.; Shintani, H.; Inoue, S.; Tagawa, Y.; Suzuki, K.; De Munck, J.; et al. Comparative study on adhesive performance of functional monomers. J. Dent. Res. 2004, 83, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Van Landuyt, K.L.; Mine, A.; De Munck, J.; Jaecques, S.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B. Are one-step adhesives easier to use and better performing? Multifactorial assessment of contemporary one-step self-etching adhesives. J. Adhes. Dent. 2009, 11, 175–190. [Google Scholar] [PubMed]
- Liu, Y.; Tjäderhane, L.; Breschi, L.; Mazzoni, A.; Li, N.; Mao, J.; Pashley, D.H.; Tay, F.R. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J. Dent. Res. 2011, 90, 953–968. [Google Scholar] [CrossRef]
- Fukegawa, D.; Hayakawa, S.; Yoshida, Y.; Suzuki, K.; Osaka, A.; Van Meerbeek, B. Chemical interaction of phosphoric acid ester with hydroxyapatite. J. Dent. Res. 2006, 85, 941–944. [Google Scholar] [CrossRef]
- Fu, B.; Sun, X.; Qian, W.; Shen, Y.; Chen, R.; Hannig, M. Evidence of chemical bonding to hydroxyapatite by phosphoric acid esters. Biomaterials 2005, 26, 5104–5110. [Google Scholar] [CrossRef]
- Camps, J.; Pashley, D.H. Buffering action of human dentin in vitro. J. Adhes. Dent. 2000, 2, 39–50. [Google Scholar]
- Takahashi, M.; Nakajima, M.; Hosaka, K.; Ikeda, M.; Foxton, R.M.; Tagami, J. Long-term evaluation of water sorption and ultimate tensile strength of HEMA-containing/-free one-step self-etch adhesives. J. Dent. 2011, 39, 506–512. [Google Scholar] [CrossRef]
- Ito, S.; Hoshino, T.; Iijima, M.; Tsukamoto, N.; Pashley, D.H.; Saito, T. Water sorption/solubility of self-etching dentin bonding agents. Dent. Mater. 2010, 26, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Salz, U.; Zimmermann, J.; Zeuner, F.; Moszner, N. Hydrolytic stability of self-etching adhesive systems. J. Adhes. Dent. 2005, 7, 107–116. [Google Scholar]
- Malacarne, J.; Carvalho, R.M.; de Goes, M.F.; Svizero, N.; Pashley, D.H.; Tay, F.R.; Yiu, C.K.; Carrilho, M.R. Water sorption/solubility of dental adhesive resins. Dent. Mater. 2006, 22, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.J.; Leach, M.; Rueggeberg, F.A.; Pashley, D.H. Effect of water content on the physical properties of model dentine primer and bonding resins. J. Dent. 1999, 27, 209–214. [Google Scholar] [CrossRef]
- Hosaka, K.; Tichy, A.; Araoka, D.; Wurihan, W.; Shibata, Y.; Ikeda, M.; Klein, C.A., Jr.; Tagami, J.; Nakajima, M. Eight-year Microtensile Bond Strength to Dentin and Interfacial Nanomechanical Properties of a One-step Adhesive. J. Adhes. Dent. 2021, 23, 461–467. [Google Scholar] [CrossRef]
- Nishitani, Y.; Yoshiyama, M.; Hosaka, K.; Tagami, J.; Donnelly, A.; Carrilho, M.; Tay, F.R.; Pashley, D.H. Use of Hoy’s solubility parameters to predict water sorption/solubility of experimental primers and adhesives. Eur. J. Oral Sci. 2007, 115, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Park, J.G.; Ye, Q.; Topp, E.M.; Misra, A.; Spencer, P. Water sorption and dynamic mechanical properties of dentin adhesives with a urethane-based multifunctional methacrylate monomer. Dent. Mater. 2009, 25, 1569–1575. [Google Scholar] [CrossRef] [Green Version]
- Kuno, Y.; Hosaka, K.; Nakajima, M.; Ikeda, M.; Klein Junior, C.A.; Foxton, R.M.; Tagami, J. Incorporation of a hydrophilic amide monomer into a one-step self-etch adhesive to increase dentin bond strength: Effect of application time. Dent. Mater. J. 2019, 38, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Tichy, A.; Hosaka, K.; Abdou, A.; Nakajima, M.; Tagami, J. Degree of Conversion Contributes to Dentin Bonding Durability of Contemporary Universal Adhesives. Oper. Dent. 2020, 45, 556–566. [Google Scholar] [CrossRef]
- Muñoz, M.A.; Luque, I.; Hass, V.; Reis, A.; Loguercio, A.D.; Bombarda, N.H. Immediate bonding properties of universal adhesives to dentine. J. Dent. 2013, 41, 404–411. [Google Scholar] [CrossRef] [Green Version]
- Yoshihara, K.; Yoshida, Y.; Hayakawa, S.; Nagaoka, N.; Torii, Y.; Osaka, A.; Suzuki, K.; Minagi, S.; Van Meerbeek, B.; Van Landuyt, K.L. Self-etch monomer-calcium salt deposition on dentin. J. Dent. Res. 2011, 90, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Ortengren, U.; Elgh, U.; Spasenoska, V.; Milleding, P.; Haasum, J.; Karlsson, S. Water sorption and flexural properties of a composite resin cement. Int. J. Prosthodont. 2000, 13, 141–147. [Google Scholar] [PubMed]
- Emamieh, S.; Sadr, A.; Ghasemi, A.; Torabzadeh, H.; Akhavanzanjani, V.; Tagami, J. Effects of solvent drying time and water storage on ultimate tensile strength of adhesives. J. Investig. Clin. Dent. 2014, 5, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, F.; Osorio, R.; Toledano, M.; Tay, F.R.; Ferrari, M. In vitro hydrolytic degradation of composite quartz fiber-post bonds created by hydrophilic silane couplings. Oper. Dent. 2006, 31, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Iwai, H.; Nishiyama, N. Effect of calcium salt of functional monomer on bonding performance. J. Dent. Res. 2012, 91, 1043–1048. [Google Scholar] [CrossRef]
- Salz, U.; Mücke, A.; Zimmermann, J.; Tay, F.R.; Pashley, D.H. pKa value and buffering capacity of acidic monomers commonly used in self-etching primers. J. Adhes. Dent. 2006, 8, 143–150. [Google Scholar]
- Yoshihara, K.; Yoshida, Y.; Nagaoka, N.; Fukegawa, D.; Hayakawa, S.; Mine, A.; Nakamura, M.; Minagi, S.; Osaka, A.; Suzuki, K.; et al. Nano-controlled molecular interaction at adhesive interfaces for hard tissue reconstruction. Acta Biomater. 2010, 6, 3573–3582. [Google Scholar] [CrossRef]
Materials | Composition | Manufacturer |
---|---|---|
Scotch Bond Universal | 10-MDP, HEMA, silane, dimethacrylate resins containing BisGMA, Dual Cure Activator, VitrebondTM copolymer, filler, ethanol, water, initiators | 3M ESPE, USA |
Clearfil Universal Bond Quick ER | 10-MDP, BisGMA, HEMA, Hydrophilic amide monomers, Colloidal silica, Ethanol, dl-Camphorquinone, Accelerators, Silane coupling agent, Water, Sodium fluoride | Kuraray Noritake Dental Inc., Tokyo, Japan |
Experimental 1-SEA | 10-MDP, BisGMA, HEMA, Colloidal silica, Ethanol, dl-Camphorquinone, Accelerators, Silane coupling agent, Water, Sodium fluoride | Kuraray Noritake Dental Inc., Tokyo, Japan |
Adhesives’ Manipulation Surfaces | ||
---|---|---|
TD | HA | |
SBU | 2.83 (0.06) Aa | 3.01 (0.10) Ab |
UBQ | 2.42 (0.07) Ba | 2.55 (0.06) Bb |
UBQexp | 2.40 (0.03) Ba | 2.50 (0.04) Bb |
Adhesives’ Manipulation Surfaces | |||
---|---|---|---|
TD | HA | ||
SBU | WS | 116.3 (3.2) Aa | 100.7 (3.7) Ab |
SL | 15.3 (3.6) Da | 13.2 (1.2) Da | |
UBQ | WS | 101.6 (5.1) Ba | 79.9 (6.3) Bb |
SL | 17.5 (2.5) Da | 7.8 (0.5) Eb | |
UBQexp | WS | 174.1 (15.0) Ca | 139.5 (10.2) Cb |
SL | 117.5 (6.3) Ea | 85.9 (3.7) Fb |
Adhesives | Storage Conditions | Adhesives’ Manipulation Surfaces | |
---|---|---|---|
TD | HA | ||
SBU | dry | 148.9 (17.7) Aa | 189.7 (31.3) Ab |
wet | 73.9 (17.8) Ba | 101.1 (8.3) Bb | |
UBQ | dry | 160.5 (15.6) Aa | 173.1 (16.7) Aa |
wet | 68.2 (19.8) Ba | 76.4 (9.8) Ba | |
UBQexp | dry | 59.6 (3.3) Ba | 69.5 (3.8) Ba |
wet | 28.0 (6.8) Ca | 33.2 (7.3) Ca |
Adhesives | Storage Conditions | Adhesives’ Manipulation Surfaces | |
---|---|---|---|
TD | HA | ||
SBU | dry | 2537 (37) Aa | 2736 (47) Ab |
wet | 1434 (67) Ba | 1729 (43) Bb | |
%ΔE | 43.5 | 36.8 | |
UBQ | dry | 2539 (56) Aa | 3204 (64) Cb |
wet | 1226 (46) Ca | 1636 (46) Db | |
%ΔE | 51.7 | 48.9 | |
UBQexp | dry | 935 (44) Da | 1096 (54) Eb |
wet | 523 (27) Ea | 631 (37) Fb | |
%ΔE | 44.0 | 42.4 |
Adhesives | Adhesives’ Manipulation Surfaces | Elements Formula | |||||
---|---|---|---|---|---|---|---|
C | O | Si | Ca | Total | |||
Atom (%) | SBU | TD | 67.26 | 30.53 | 2.21 | 0.00 | 100.00 |
HA | 65.82 | 32.31 | 1.80 | 0.08 | 100.00 | ||
UBQ | TD | 69.25 | 28.23 | 2.52 | 0.00 | 100.00 | |
HA | 69.27 | 28.25 | 2.39 | 0.10 | 100.00 | ||
UBQexp | TD | 68.18 | 29.57 | 2.25 | 0.00 | 100.00 | |
HA | 68.79 | 29.09 | 2.04 | 0.08 | 100.00 | ||
mass (%) | SBU | TD | 59.47 | 35.96 | 4.56 | 0.00 | 100.00 |
HA | 58.09 | 37.98 | 3.70 | 0.23 | 100.00 | ||
UBQ | TD | 61.41 | 33.34 | 5.25 | 0.00 | 100.00 | |
HA | 61.40 | 33.35 | 4.96 | 0.28 | 100.00 | ||
UBQexp | TD | 60.42 | 34.91 | 4.67 | 0.00 | 100.00 | |
HA | 61.11 | 34.43 | 4.23 | 0.23 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motoyama, Y.; Yamauti, M.; Nakajima, M.; Ikeda, M.; Tagami, J.; Shimada, Y.; Hosaka, K. Hydroxyapatite Affects the Physicochemical Properties of Contemporary One-Step Self-Etch Adhesives. Materials 2022, 15, 8255. https://doi.org/10.3390/ma15228255
Motoyama Y, Yamauti M, Nakajima M, Ikeda M, Tagami J, Shimada Y, Hosaka K. Hydroxyapatite Affects the Physicochemical Properties of Contemporary One-Step Self-Etch Adhesives. Materials. 2022; 15(22):8255. https://doi.org/10.3390/ma15228255
Chicago/Turabian StyleMotoyama, Yutaro, Monica Yamauti, Masatoshi Nakajima, Masaomi Ikeda, Junji Tagami, Yasushi Shimada, and Keiichi Hosaka. 2022. "Hydroxyapatite Affects the Physicochemical Properties of Contemporary One-Step Self-Etch Adhesives" Materials 15, no. 22: 8255. https://doi.org/10.3390/ma15228255
APA StyleMotoyama, Y., Yamauti, M., Nakajima, M., Ikeda, M., Tagami, J., Shimada, Y., & Hosaka, K. (2022). Hydroxyapatite Affects the Physicochemical Properties of Contemporary One-Step Self-Etch Adhesives. Materials, 15(22), 8255. https://doi.org/10.3390/ma15228255