Research Progress of Wide Tunable Bragg Grating External Cavity Semiconductor Lasers
Abstract
:1. Introduction
2. Principle of BG-ECSLs
3. Research Progress of BG-ECSLs
3.1. VBG-ECSLs
3.2. FBG-ECSLs
3.3. WBG-ECSLs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lang, X.; Jia, P.; Chen, Y.; Qin, L.; Liang, L.; Chen, C.; Wang, Y.; Shan, X.; Ning, Y.; Wang, L. Advances in narrow linewidth diode lasers. Sci. China Inf. Sci. 2019, 62, 61401. [Google Scholar] [CrossRef] [Green Version]
- Tran, M.A.; Huang, D.; Bowers, J.E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photonics 2019, 4, 111101. [Google Scholar] [CrossRef] [Green Version]
- Komljenovic, T.; Srinivasan, S.; Norberg, E.; Davenport, M.; Fish, G.; Bowers, J.E. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 2015, 21, 214–222. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, H.; Tan, S.; Yu, H.; Liu, W.; Xiao, Y.; Wang, B.; Zhou, J.; Sun, S.; Zhao, W.; et al. Spectrum-locked high-power volume Bragg grating external-cavity diode laser. Laser Phys. Lett. 2022, 19, 065001. [Google Scholar] [CrossRef]
- Sayed, A.F.; Mustafa, F.M.; Khalaf, A.A.M.; Aly, M.H. Spectral width reduction using apodized cascaded fiber Bragg grating for post-dispersion compensation in WDM optical networks. Photonic Netw. Commun. 2021, 41, 231–241. [Google Scholar] [CrossRef]
- Hengesbach, S.; Krauch, N.; Holly, C.; Traub, M.; Witte, U.; Hoffmann, D. High-power dense wavelength division multiplexing of multimode diode laser radiation based on volume Bragg gratings. Opt. Lett. 2013, 38, 3154–3157. [Google Scholar] [CrossRef]
- Ou, Y.; Zhou, C.; Qian, L.; Fan, D.; Cheng, C.; Guo, H.; Xiong, Z. Large WDM FBG sensor network based on frequency-shifted interferometry. IEEE Photonics Technol. Lett. 2017, 29, 535–538. [Google Scholar] [CrossRef]
- Kaushal, S.; Cheng, R.; Ma, M.; Mistry, A.; Burla, M.; Chrostowski, L.; Azaña, J. Optical signal processing based on silicon photonics waveguide Bragg gratings. Front. Optoelectron. 2018, 11, 163–188. [Google Scholar] [CrossRef]
- Mihailov, S.J.; Grobnic, D.; Hnatovsky, C.; Walker, R.B.; Lu, P.; Coulas, D.; Ding, H. Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings. Sensors 2017, 17, 2909. [Google Scholar] [CrossRef] [Green Version]
- Poulton, C.V.; Yaacobi, A.; Cole, D.B.; Byrd, M.J.; Raval, M.; Vermeulen, D.; Watts, M.R. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 2017, 42, 4091–4094. [Google Scholar] [CrossRef]
- Newman, Z.L.; Maurice, V.; Drake, T.; Stone, J.R.; Briles, T.C.; Spencer, D.T.; Fredrick, C.; Li, Q.; Westly, D.; Ilic, B.R.; et al. Architecture for the photonic integration of an optical atomic clock. Optica 2019, 6, 680–685. [Google Scholar] [CrossRef] [Green Version]
- Daghestani, N.S.; Cataluna, M.A.; Ross, G.; Rose, M.J. Compact dual-wavelength InAs/GaAs quantum-dot external-cavity laser stabilized by a single volume Bragg grating. IEEE Photonics Technol. Lett. 2010, 23, 176–178. [Google Scholar] [CrossRef]
- Shen, L.; Ye, Q.; Xin, G.; Cai, H.; Fang, Z.; Qu, R. Mode-hop-free electro-optically tuned external-cavity diode laser with a volume Bragg grating. In Conference on Lasers and Electro-Optics/Pacific Rim; Optica Publishing Group: Hong Kong, China, 2011; p. C153. [Google Scholar]
- Shen, L.; Ye, Q.; Cai, H.; Qu, R. Mode-hop-free electro-optically tuned external-cavity diode laser using volume Bragg grating and PLZT ceramic. Opt. Express 2011, 19, 17244–17249. [Google Scholar] [CrossRef] [Green Version]
- Sumpf, B.; Bawamia, A.; Blume, G.; Eppich, B.; Ginolas, A.; Spießberger, S.; Thomas, M.; Erbert, G. Continuously current-tunable, narrow line-width miniaturized external cavity diode laser at 633 nm. In Novel In-Plane Semiconductor Lasers XI; SPIE: Bellingham, WA, USA, 2012; Volume 8277, pp. 170–177. [Google Scholar]
- Li, Y.; Negoita, V.; Barnowski, T.; Strohmaier, S.; Treusch, G. Wavelength locking of high-power diode laser bars by volume Bragg gratings. In Proceedings of the 2012 IEEE Photonics Society Summer Topical Meeting Series, Seattle, WA, USA, 9–11 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 29–30. [Google Scholar]
- Luvsandamdin, E.; Spießberger, S.; Schiemangk, M.; Sahm, A.; Mura, G.; Wicht, A.; Peters, A.; Erbert, G.; Tränkle, G. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space. Appl. Phys. B 2013, 111, 255–260. [Google Scholar] [CrossRef]
- Luvsandamdin, E.; Kürbis, C.; Schiemangk, M.; Sahm, A.; Wicht, A.; Peters, A.; Erbert, G.; Tränkle, G. Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. Opt. Express 2014, 22, 7790–7798. [Google Scholar] [CrossRef] [PubMed]
- Rauch, S.; Sacher, J. Volume holographic grating stabilized 780 nm ridge waveguide laser with an output power of 380 mW. In CLEO: Applications and Technology; Optical Society of America: Washington, DC, USA, 2015; p. JTh2A.10. [Google Scholar]
- Zheng, Y.; Kawashima, T.; Satoh, N.; Kan, H. Stable-spectrum and narrow-linewidth operation of broad-area distributed feedback diode laser with volume Bragg grating. Appl. Phys. Express 2015, 8, 112101. [Google Scholar] [CrossRef]
- Ruhnke, N.; Müller, A.; Eppich, B.; Maiwald, M.; Sumpf, B.; Erbert, G.; Traenkle, G. Micro-integrated external cavity diode laser with 1.4-W narrowband emission at 445 nm. IEEE Photonics Technol. Lett. 2016, 28, 2791–2794. [Google Scholar] [CrossRef]
- Ivanov, S.A.; Nikonorov, N.V.; Ignat’ev, A.I.; Zolotarev, V.V.; Lubyanskiy, Y.V.; Pikhtin, N.A.; Tarasov, I.S. Narrowing of the emission spectra of high-power laser diodes with a volume Bragg grating recorded in photo-thermo-refractive glass. Semiconductors 2016, 50, 819–823. [Google Scholar] [CrossRef]
- Kohfeldt, A.; Kürbis, C.; Luvsandamdin, E.; Schiemangk, M.; Wicht, A.; Peters, A.; Erbert, G.; Tränkle, G. Compact narrow linewidth diode laser modules for precision quantum optics experiments on board of sounding rockets. In Quantum Optics; SPIE: Bellingham, WA, USA, 2016; Volume 9900, pp. 203–212. [Google Scholar]
- Christopher, H.; Arar, B.; Bawamia, A.; Kürbis, C.; Lewoczko-Adamczyk, W.; Schiemangk, M.; Smol, R.; Wicht, A.; Peters, A.; Tränkle, G. Narrow linewidth micro-integrated high power diode laser module for deployment in space. In Proceedings of the 2017 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Naha, Japan, 14–16 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 150–153. [Google Scholar]
- Zheng, Y.; Sekine, T.; Kurita, T.; Kato, Y.; Kawashima, T. Continuous-wave dual-wavelength operation of a distributed feedback laser diode with an external cavity using a volume Bragg grating. Jpn. J. Appl. Phys. 2018, 57, 030307. [Google Scholar] [CrossRef]
- Ruhnke, N.; Müller, A.; Eppich, B.; Maiwald, M.; Sumpf, B.; Erbert, G.; Trankle, G. Compact deep UV system at 222.5 nm based on frequency doubling of GaN laser diode emission. IEEE Photonics Technol. Lett. 2018, 30, 289–292. [Google Scholar] [CrossRef]
- Chung, T.; Hsu, W.T.; Hsieh, Y.H.; Shih, B.J. Recording 2nd order PQ: PMMA reflective VBG for diode laser output spectrum narrowing. Opt. Express 2019, 27, 8258–8266. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Sun, H.; Wang, C.; Qi, Z. Development of a 780nm narrow line width semiconductor laser device. In Semiconductor Lasers and Applications IX; SPIE: Bellingham, WA, USA, 2019; Volume 11182, pp. 58–63. [Google Scholar]
- Yim, S.H.; Kim, T.H.; Choi, J.M. A simple extended-cavity diode laser using a precision mirror mount. Rev. Sci. Instrum. 2020, 91, 046102. [Google Scholar] [CrossRef] [PubMed]
- Chi, M.; Müller, A.; Hansen, A.K.; Jensen, O.B.; Petersen, P.M.; Sumpf, B. Microsecond pulse-mode operation of a micro-integrated high-power external-cavity tapered diode laser at 808 nm. Appl. Opt. 2020, 59, 7836–7840. [Google Scholar] [CrossRef]
- Rådmark, M.; Elgcrona, G.; Karlsson, H. Novel narrow linewidth 785 nm diode laser with enhanced spectral purity facilitates low-frequency Raman spectroscopy. In Advanced Chemical Microscopy for Life Science and Translational Medicine; SPIE: Bellingham, WA, USA, 2020; Volume 11252, pp. 62–68. [Google Scholar]
- Liu, B.; Liu, H.; Zhu, P.; Liu, X. High-side mode suppression ratio with a high-stability external-cavity diode laser array at 976 nm in a wide temperature and current range. Opt. Commun. 2021, 486, 126792. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Li, H.; Xiao, H.; Xia, Y.; Gao, R.; Li, X.; Zheng, Q. Wavelength stabilization and spectra narrowing of a 405 nm external-cavity semiconductor laser based on a volume Bragg grating. Appl. Opt. 2022, 61, 4132–4139. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, W.Q.; Fan, J.; Zhou, X.; Wang, Y.; Qu, H.; Zheng, W. High-power tunable dual-wavelength diode laser with a composite external cavity. Opt. Lett. 2022, 47, 2486–2489. [Google Scholar] [CrossRef]
- Chi, M.; Müller, A.; Hansen, A.K.; Jensen, O.B.; Petersen, P.M.; Sumpf, B. Micro-integrated high-power narrow-linewidth external-cavity tapered diode laser at 762 nm for daylight imaging. Opt. Commun. 2022, 514, 128120. [Google Scholar] [CrossRef]
- Qi, Z.; Hu, W.; Wang, C. Compact and robust Bragg grating stabilized diode laser at 780 nm. In Proceedings of the Seventh Asia Pacific Conference on Optics Manufacture and 2021 International Forum of Young Scientists on Advanced Optical Manufacturing (APCOM and YSAOM 2021), Shanghai, China, 28–31 October 2021; SPIE: Bellingham, WA, USA, 2022; Volume 12166, pp. 411–414. [Google Scholar]
- Wang, R.; Yang, Z.; Tang, H.; Li, L.; Zhao, H.; Wang, H.; Xu, X. A linewidth narrowed diode laser for metastable Argon atom pumping. Opt. Commun. 2022, 502, 127398. [Google Scholar] [CrossRef]
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/product-742/808nm_40W_fiber_coupled_module_narrow_linewidth_DILAS-1416223024.pdf (accessed on 3 November 2022).
- Available online: https://www.optoprim.de/PDF/Ondax/FS-Butterfly_785-1064.pdf (accessed on 3 November 2022).
- Available online: https://www.rpmclasers.com/wp-content/uploads/2021/03/R1Z5-Datasheet-SM-Fiber-coupled-BF.pdf (accessed on 3 November 2022).
- Available online: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=14427 (accessed on 3 November 2022).
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/9342/976nm_100W_FC_Module_VBG_105um_PhotonTEC-1623621998.pdf (accessed on 3 November 2022).
- Mikel, B.; Buchta, Z.; Lazar, J.; Cip, O. High frequency stability semiconductor laser sources at 760 nm wavelength. Resonance 2010, 1, 9. [Google Scholar]
- Huang, Y.; Li, Y.; Wang, H.; Yu, X.; Zhang, H.; Zhang, W.; Zhu, H.; Zhou, S.; Sun, R.; Zhang, Y. Wavelength stabilization of a 980-nm semiconductor laser module stabilized with high-power uncooled dual FBG. Chin. Opt. Lett. 2011, 9, 031403. [Google Scholar] [CrossRef]
- Loh, W.; O’Donnell, F.J.; Plant, J.J.; Brattain, M.A.; Missaggia, L.J.; Juodawlkis, P.W. Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL). IEEE Photonics Technol. Lett. 2011, 23, 974–976. [Google Scholar] [CrossRef]
- Chen, F.; Hodgkinson, J.; Staines, S.; James, S.; Tatam, R. A 1.65 µm region external cavity laser diode using an InP gain chip and a fibre Bragg grating. In Proceedings of the OFS2012 22nd International Conference on Optical Fiber Sensors, Beijing, China, 14–19 October 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8421, pp. 876–879. [Google Scholar]
- Guo, W.; Tan, M.; Jiao, J.; Guo, X.; Sun, N. 980 nm fiber grating external cavity semiconductor lasers with high side mode suppression ratio and high stable frequency. J. Semicond. 2014, 35, 084007. [Google Scholar] [CrossRef]
- Teh, P.S.; Alam, S.; Shepherd, D.P.; Richardson, D.J. Generation of mode-locked optical pulses at 1035 nm from a fiber Bragg grating stabilized semiconductor laser diode. Opt. Express 2014, 22, 13366–13373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, S.G.; Chen, F.; Gates, J.C.; Holmes, C.; Staines, S.E.; James, S.W.; Hodgkinson, J.; Smith, P.G.R.; Tatam, R.P. Bragg-grating-stabilized external cavity lasers for gas sensing using tunable diode laser spectroscopy. In Novel In-Plane Semiconductor Lasers XIII; SPIE: Bellingham, WA, USA, 2014; Volume 9002, pp. 15–21. [Google Scholar]
- Lynch, S.G.; Holmes, C.; Berry, S.A.; Gates, J.C.; Jantzen, A.; Ferreiro, T.I.; Smith, P.G.R. External cavity diode laser based upon an FBG in an integrated optical fiber platform. Opt. Express 2016, 24, 8391–8398. [Google Scholar] [CrossRef]
- Wei, F.; Yang, F.; Zhang, X.; Xu, D.; Ding, M.; Zhang, L.; Chen, D.; Cai, H.; Fang, Z.; Xijia, G. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity. Opt. Express 2016, 24, 17406–17415. [Google Scholar] [CrossRef]
- Wei, F.; Sun, G.; Zhang, L.; Chen, G.; Xin, G.; Chen, D.; Cai, H. Narrow linewidth hybrid integrated external cavity diode laser for precision applications. In Semiconductor Lasers and Applications VII; SPIE: Bellingham, WA, USA, 2016; Volume 10017, pp. 88–91. [Google Scholar]
- Zhang, L.; Wei, F.; Sun, G.; Chen, D.J.; Cai, H.W.; Qu, R.H. Thermal tunable narrow linewidth external cavity laser with thermal enhanced FBG. IEEE Photonics Technol. Lett. 2017, 29, 385–388. [Google Scholar] [CrossRef]
- Yan, Z.H.; Zhou, S. Study of the characteristics of 976 nm Bragg grating external cavity semiconductor lasers. Mod. Phys. Lett. B 2018, 32, 1850214. [Google Scholar] [CrossRef]
- Yang, X.; Lindberg, R.; Margulis, W.; Fröjdh, K.; Laurell, F. Continuously tunable, narrow-linewidth laser based on a semiconductor optical amplifier and a linearly chirped fiber Bragg grating. Opt. Express 2019, 27, 14213–14220. [Google Scholar] [CrossRef]
- Lindberg, R.; Laurell, F.; Fröjdh, K.; Margulis, W. C-cavity fiber laser employing a chirped fiber Bragg grating for electrically gated wavelength tuning. Opt. Express 2020, 28, 9208–9215. [Google Scholar] [CrossRef]
- Wang, L.; Shen, Z.; Feng, X.; Li, F.; Cao, Y.; Wang, X.; Guan, B.O. Tunable single-longitudinal-mode fiber laser based on a chirped fiber Bragg grating. Opt. Laser Technol. 2020, 121, 105775. [Google Scholar] [CrossRef]
- Gao, S.; Luo, M.; Jing, Z.; Chen, H. A tunable dual-wavelength fiber ring-cavity laser based on a FBG and DFB laser injection. Optik 2020, 203, 163961. [Google Scholar] [CrossRef]
- Congar, A.; Gay, M.; Perin, G.; Mammez, D.; Simon, J.C.; Besnard, P.; Rouvillain, J.; Georges, T.; Lablonde, L.; Robin, T.; et al. Narrow linewidth near-UV InGaN laser diode based on external cavity fiber Bragg grating. Opt. Lett. 2021, 46, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Lablonde, L.; Le Rouzic, C.; Robin, T.; Congar, A.; Trebaol, S.; Gay, M.; Perin, G.; Mammez, D.; Simon, J.C.; Besnard, P.; et al. Assessment of a sub-MHz linewidth fiber Bragg grating external-cavity InGaN laser diode. In Gallium Nitride Materials and Devices XVI; SPIE: Bellingham, WA, USA, 2021; Volume 11686, pp. 34–41. [Google Scholar]
- Monga, K.J.J.; Martínez-Manuel, R.; Meyer, J.; Diaz, S.; Sompo, J.M. Stable and narrow linewidth linear cavity CW-active Q-switched erbium-doped fiber laser. Opt. Laser Technol. 2021, 140, 107013. [Google Scholar] [CrossRef]
- Su, Q.; Wei, F.; Sun, G.; Li, S.; Wu, R.; Pi, H.; Chen, D.; Yang, F.; Ying, K.; Qu, R.; et al. Frequency-Stabilized External Cavity Diode Laser at 1572 nm Based on Frequency Stability Transfer. IEEE Photonics Technol. Lett. 2022, 34, 203–206. [Google Scholar] [CrossRef]
- Available online: https://www.laserdiodesource.com/shop/1550nm-10mW-narrow-linewidth-Denselight (accessed on 3 November 2022).
- Available online: http://aikelabs.com/company/345.htm (accessed on 3 November 2022).
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/4355/SM_10XX_YY_400_600_670-1619705929.pdf (accessed on 3 November 2022).
- Available online: http://www.wlphotonics.com/product/Manual_Tunable_Fiber_Laser.pdf (accessed on 3 November 2022).
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/product-2122/790nm_20mW_butterfly_grating_stabilized_NOLATECH-1420571090.pdf (accessed on 3 November 2022).
- Numata, K.; Camp, J.; Krainak, M.A.; Stolpner, L. Performance of planar-waveguide external cavity laser for precision measurements. Opt. Express 2010, 18, 22781–22788. [Google Scholar] [CrossRef]
- Yan, L.; Ma, L.; Tang, X. Narrow-band photon pairs generated from spontaneous parametric down conversion in a Bragg-grating enhanced waveguide. In Quantum Communications and Quantum Imaging VIII; SPIE: Bellingham, WA, USA, 2010; Volume 7815, pp. 172–178. [Google Scholar]
- Oh, S.H.; Yoon, K.H.; Kim, K.S.; Kim, J.; Kwon, O.K.; Oh, D.K.; Noh, Y.O.; Seo, J.K.; Lee, H.J. Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1534–1541. [Google Scholar]
- Kim, K.J.; Son, N.S.; Kim, J.W.; Oh, M.C. Near Infrared Laser Based on Polymer Waveguide Bragg Grating. Korean J. Opt. Photonics 2011, 22, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Cheon, B.J.; Son, N.S.; Kim, J.W.; Oh, M.C. Near Infrared external cavity tunable laser based on polymer waveguide Bragg gratings. In Proceedings of the 2012 17th Opto-Electronics and Communications Conference, Busan, Korea, 2–6 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 605–606. [Google Scholar]
- Son, N.S.; Kim, K.J.; Kim, J.W.; Oh, M.C. Near-infrared tunable lasers with polymer waveguide Bragg gratings. Opt. Express 2012, 20, 827–834. [Google Scholar] [CrossRef]
- Kotelnikov, E.; Katsnelson, A.; Patel, K.; Kudryashov, L. High-power single-mode ingaasp/inp laser diodes for pulsed operation. In Novel In-Plane Semiconductor Lasers XI; SPIE: Bellingham, WA, USA, 2012; Volume 8277, pp. 178–183. [Google Scholar]
- Kim, J.W.; Kim, K.J.; Son, N.S.; Oh, M.C. Strain-imposed external cavity tunable lasers operating for NIR wavelength. J. Opt. Soc. Korea 2013, 17, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.J.; Oh, M.C.; Moon, S.R.; Lee, C.H. Flexible polymeric tunable lasers for WDM passive optical networks. J. Light. Technol. 2013, 31, 982–987. [Google Scholar] [CrossRef]
- Numata, K.; Alalusi, M.; Stolpner, L.; Margaritis, G.; Camp, J.; Krainak, M. Characteristics of the single-longitudinal-mode planar-waveguide external cavity diode laser at 1064 nm. Opt. Lett. 2014, 39, 2101–2104. [Google Scholar] [CrossRef] [PubMed]
- Yun, B.; Hu, G.; Zhang, R.; Cui, Y. Tunable erbium-doped fiber ring laser based on thermo-optic polymer waveguide Bragg grating. Opt. Commun. 2015, 336, 30–33. [Google Scholar] [CrossRef]
- Mueller, T.; Maese-Novo, A.; Zhang, Z.; Polatynski, A.; Felipe, D.; Kleinert, M.; Brinker, W.; Zawadzki, C.; Keil, N. Switchable dual-polarization external cavity tunable laser. Opt. Lett. 2015, 40, 447–450. [Google Scholar] [CrossRef]
- Lynch, S.G.; Gates, J.C.; Berry, S.A.; Holmes, C.; Smith, P.G.R. Thermally tunable integrated planar Bragg-grating stabilized diode laser. In Novel In-Plane Semiconductor Lasers XIV; SPIE: Bellingham, WA, USA, 2015; Volume 9382, pp. 102–107. [Google Scholar]
- Girschikofsky, M.; Förthner, M.; Rommel, M.; Frey, L.; Hellmann, R. Waveguide Bragg gratings in Ormocer hybrid polymers. Opt. Express 2016, 24, 14725–14736. [Google Scholar] [CrossRef] [PubMed]
- Park, T.H.; Shin, J.S.; Huang, G.; Chu, W.S.; Oh, M.C. Tunable channel drop filters consisting of a tilted Bragg grating and a mode sorting polymer waveguide. Opt. Express 2016, 24, 5709–5714. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Y.; Zhou, Y.; Zhao, Y.; Zheng, J.; Lu, J.; Chen, X. Planar waveguide moiré grating. Opt. Express 2017, 25, 24960–24973. [Google Scholar] [CrossRef]
- Iadanza, S.; Bakoz, A.; Panettieri, D.; Tedesco, A.; Giannino, G.; Grande, M.; O’Faolain, L. Thermally Stable External Cavity Laser Based on Silicon Nitride Periodic Nanostructures. In Proceedings of the 2018 20th International Conference on Transparent Optical Networks (ICTON), Bucharest, Romania, 1–5 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Iadanza, S.; Bakoz, A.P.; Singaravelu, P.K.J.; Panettieri, D.; Schulz, S.A.; Devarapu, G.C.R.; Guerber, S.; Baudot, C.; Boeuf, F.; Hegarty, S.; et al. Thermally stable hybrid cavity laser based on silicon nitride gratings. Appl. Opt. 2018, 57, E218–E223. [Google Scholar] [CrossRef] [Green Version]
- Primiani, P.; Boust, S.; Fedeli, J.M.; Duport, F.; Gomez, C.; Paret, J.F.; Garreau, A.; Mekhazni, K.; Fortin, C.; Dijk, F.V. Silicon nitride Bragg grating with joule thermal tuning for external cavity lasers. IEEE Photonics Technol. Lett. 2019, 31, 983–986. [Google Scholar] [CrossRef]
- Xiang, C.; Morton, P.A.; Bowers, J.E. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating. Opt. Lett. 2019, 44, 3825–3828. [Google Scholar] [CrossRef]
- Luo, X.; Chen, C.; Qin, L.; Zhang, X.; Chen, Y.; Wang, B.; Liang, L.; Jia, P.; Ning, Y.; Wang, L. High-birefringence waveguide Bragg gratings fabricated in a silica-on-silicon platform with displacement Talbot lithography. Opt. Mater. Express 2020, 10, 2406–2414. [Google Scholar] [CrossRef]
- Janjua, B.; Iu, M.L.; Yan, Z.; Charles, P.; Chen, E.; Helmy, A.S. Distributed feedback lasers using surface gratings in Bragg waveguides. Opt. Lett. 2021, 46, 3689–3692. [Google Scholar] [CrossRef] [PubMed]
- Ibrahimi, Y.; Boust, S.; Wilmart, Q.; Paret, J.F.; Garreau, A.; Mekhazni, K.; Fortin, C.; Duport, F.; Fedeli, J.M.; Sciancalepore, C.; et al. Low FSR Mode-Locked Laser Based on InP-Si3N4 Hybrid Integration. J. Light. Technol. 2021, 39, 7573–7580. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Y.; Wu, Y.; Ma, Y.; Hong, Z.; Wu, H.; Chen, X. Monolithically Integrated Narrow Linewidth Semiconductor Laser with a Narrow Band Reflector. In Proceedings of the 2021 19th International Conference on Optical Communications and Networks (ICOCN), Qufu, China, 23–27 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–3. [Google Scholar]
- Luo, X.; Chen, C.; Ning, Y.; Zhang, X.; Qiu, C.; Chen, J.; Yin, X.; Qin, L.; Wang, L. High linear polarization, narrow linewidth hybrid semiconductor laser with an external birefringence waveguide Bragg grating. Opt. Express 2021, 29, 33109–33120. [Google Scholar] [CrossRef]
- Zheng, Y.; Yue, J.; Zhang, P. Analysis of parameter influence law of waveguide Bragg grating. Opt. Laser Technol. 2022, 146, 107576. [Google Scholar] [CrossRef]
- Luo, X.; Chen, C.; Ning, Y.; Zhang, J.; Chen, J.; Zhang, X.; Li, L.; Wu, H.; Zhou, Y.; Qin, L.; et al. Single polarization, narrow linewidth hybrid laser based on selective polarization mode feedback. Opt. Laser Technol. 2022, 154, 108340. [Google Scholar] [CrossRef]
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/9179/980nm_50mW_laser_diode_TO_Can_Toptica_eagleyard-1618792092.pdf (accessed on 3 November 2022).
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/product-1665/1528nm_1563nm_20mW_butterfly_tunable_Finisar-1417229311.pdf (accessed on 3 November 2022).
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/5789/1064nm_100mW_DFB_Butterfly-1600791896.pdf (accessed on 3 November 2022).
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/5171/1060nm_80mW_COC_Gain_Chip-1600791852.pdf (accessed on 3 November 2022).
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/9173/760nm_80mW_widely_tunable_TO_Can_Toptica_eagleyard-1618784650.pdf (accessed on 3 November 2022).
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/9312/1310nm_20mW_2gbps_TO_Can_GLsun-1622752947.pdf (accessed on 3 November 2022).
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/9001/DATA_SHEET___Continuously_Tunable_C_Band_Laser_Source_Compact_Turn_Key_Module_Adjustable_Output_Power___Model_CBDX1_1_GC_FA_-1661971031.pdf (accessed on 3 November 2022).
- Available online: https://www.laserdiodesource.com/files/pdfs/laserdiodesource_com/product-2177/1530nm_1565nm_20mW_OEM_MODULE_narrow_linewidth_RIO-1423970578.pdf (accessed on 3 November 2022).
- Saktioto, T.; Fadilla, F.D.; Soerbakti, Y.; Irawan, D.; Okfalisa. Application of Fiber Bragg Grating Sensor System for Simulation Detection of the Heart Rate. J. Phys. Conf. Ser. 2021, 2049, 012002. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Advances in Waveguide Bragg Grating Structures, Platforms, and Applications: An Up-to-Date Appraisal. Biosensors 2022, 12, 497. [Google Scholar] [CrossRef]
- Jinachandran, S.; Rajan, G. Fibre Bragg grating based acoustic emission measurement system for structural health monitoring applications. Materials 2021, 14, 897. [Google Scholar] [CrossRef]
- Park, T.H.; Kim, S.M.; Oh, M.C. Polymer-waveguide Bragg-grating devices fabricated using phase-mask lithography. Curr. Opt. Photonics 2019, 3, 401–407. [Google Scholar]
- Nishijima, Y.; Ueno, K.; Juodkazis, S.; Mizeikis, V.; Fujiwara, H.; Sasaki, K.; Misawa, H. Lasing with well-defined cavity modes in dye-infiltrated silica inverse opals. Opt. Express 2009, 17, 2976–2983. [Google Scholar] [CrossRef]
- Mikutis, M.; Kudrius, T.; Šlekys, G.; Paipulas, D.; Juodkazis, S. High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss-Bessel laser beams. Opt. Mater. Express 2013, 3, 1862–1871. [Google Scholar] [CrossRef]
- Roth, G.L.; Kefer, S.; Hessler, S.; Esen, C.; Hellmann, R. Polymer photonic crystal waveguides generated by femtosecond laser. Laser Photonics Rev. 2021, 15, 2100215. [Google Scholar] [CrossRef]
Type | λB | Linewidth | SMSR | Tuning Range | Current | Power | Year | |
---|---|---|---|---|---|---|---|---|
VBG | 1179.9 nm 1182.8 nm | 84 GHz * | >34 dB | - | - | 1 A | 0.186 W | 2010 [12] |
VBG | 810 nm | 19 MHz | 37 dB | 0.072 nm | 32.9 GHz * | - | 10 mW | 2011 [13] |
VBG | 633 nm | <10 MHz | >25 dB | 0.034 nm | 25 GHz * | 46 mA | 5.3 mW | 2012 [15] |
VBG | 780.24 nm | 2 kHz | >57 dB | 0.063 nm * | 31 GHz | 250 mA | 123 mW | 2013 [17] |
VBG | 766.7 nm | 3 kHz | >45 dB | 0.054 nm* | 27.5 GHz | 240 mA | 33.4 mW | 2014 [18] |
VBG | 780 nm | 36 kHz | >50 dB | 0.011 nm * | 5.2 GHz | 535 mA | 380 mW | 2015 [19] |
VBG | 1064 nm | 8.7 GHz * | - | 0.11 nm | 29 GHz * | 3 A | 1.3 W | 2015 [20] |
VBG | 445 nm | 1.5 THz * | 50 dB | - | - | 1.2 A | 1.4 W | 2016 [21] |
VBG | 767 nm | 55 kHz | - | 0.098 nm * | 50 GHz | 200 mA | 30 mW | 2016 [23] |
VBG | 1064.49 nm | 30 kHz | >45 dB | - | - | 100 mA | 4 mW | 2017 [24] |
VBG | 808.07 nm | 124 GHz * | 26 dB | 1.9 nm * | 0.88 THz | 2.5 A | 0.415 W | 2018 [25] |
VBG | 708.24 nm | 100 kHz | 54 dB | - | - | - | 50 mW | 2019 [28] |
VBG | 780.25 nm | 19 kHz | - | 0.016 nm * | 8 GHz | 150 mA | 30 mW | 2020 [29] |
VBG | 808 nm | 2.8 GHz * | - | - | - | 6 A | 4.3 W | 2020 [30] |
VBG | 976 nm | 157 GHz * | >30 dB | - | - | 50 A | 33.9 W | 2021 [32] |
VBG | 405.1 nm | 146 GHz * | - | 0.06 nm | 109.7 GHz * | 300 mA | 292 mW | 2022 [33] |
VBG | 762 nm | 2.1 GHz * | 16 dB | 0.012 nm | 6.2 GHz * | 3 A | 1.31 W | 2022 [35] |
VBG | 780 nm | 70 kHz | - | 0.018 nm * | 9 GHz | 250 mA | 30 mW | 2022 [36] |
VBG | 811.53 nm | 68.3 GHz * | 40 dB | 0.2 nm | 91.1 GHz * | 10 A | 106.4 W | 2022 [37] |
VBG | 808 nm | 229.8 GHz * | - | 1.2 nm | 551.4 GHz * | <70 A | 40 W | 2022 [38] |
VBG | 830 nm | 43.5 GHz * | 40 dB | 1 nm | 435.5 GHz * | 1.5 A | 0.8 W | 2022 [39] |
VBG | 1064 nm | <100 kHz | >35 dB | 1 nm | 265 GHz * | 350 mA | 50 mW | 2022 [40] |
VBG | 785 nm | 29.2 GHz * | >40 dB | >0.125 nm | >60.9 GHz * | 1.5 A | 0.6 W | 2022 [41] |
VBG | 976 nm | 314.9 GHz * | >40 dB | 2 nm | 629.9 GHz * | 9.5 A | 100 W | 2022 [42] |
Type | λB | Linewidth | SMSR | Tuning Range | Current | Power | Year | |
---|---|---|---|---|---|---|---|---|
FBG | 760 nm | <208 GHz * | >50 dB | 1 nm | 519.4 GHz * | - | - | 2010 [43] |
FBG | 980 nm | <312 GHz * | >45 dB | 0.1 nm | 31.2 GHz * | 400 mA | 200 mW | 2011 [44] |
FBG | 1550 nm | 1 kHz | - | 1.1 nm | 146.7 GHz * | 4 A | 0.37 W | 2011 [45] |
FBG | 1648.2 nm | <5 MHz | - | - | - | 500 mA | 3.5 mW | 2012 [46] |
FBG | 974 nm | <31.6 GHz * | >45 dB | - | - | 100 mA | 7.1 mW | 2014 [47] |
FBG | 1035 nm | 67.2 GHz * | 50 dB | 0.1 nm | 28 GHz * | - | 400 mW | 2014 [48] |
FBG | 1647 nm | 55.3 GHz * | - | 1 nm | 110.6 GHz * | - | - | 2014 [49] |
FBG | 1532.83 nm | <14 kHz | >60 dB | - | - | 350 mA | 9 mW | 2016 [50] |
FBG | 1549.7 nm | 125 Hz | - | 0.8 nm | 99.9 GHz * | 131 mA | 3 mW | 2016 [51] |
FBG | 1550 nm | <3 kHz | - | 0.173 nm * | 21.6 GHz | 270 mA | 20 mW | 2016 [52] |
FBG | 1550 nm | 35 kHz | >50 dB | 0.5 nm | 62.4 GHz * | 187 mA | - | 2017 [53] |
FBG | 976 nm | <50.4 GHz * | >40 dB | 1.0925 nm | 344.1 GHz * | 100 mA | 26.5 mW | 2018 [54] |
FBG | 1550 nm | <3.7 GHz * | >25 dB | 48 nm | 6 THz * | 195 mA | 400 mW | 2019 [55] |
FBG | 1550 nm | 5 GHz * | >35 dB | 35 nm | 4.7 THz * | 480 mA | - | 2020 [56] |
FBG | 1550 nm | 8.5 kHz | >50 dB | 30 nm | 3.7 THz * | 39 mA | 13 mW | 2020 [57] |
FBG | 1550.32 nm 1552.40 nm | - | - | 3.26 nm | 407.1 GHz * | 150 mA | 0.48 mW | 2020 [58] |
FBG | 400.5 nm | 16 kHz | 44 dB | 0.5 nm | 935.2 GHz * | 95 mA | 1.3 mW | 2021 [59] |
FBG | 400.8 nm | 56.3 GHz * | 46 dB | 0.5 nm | 933.8 GHz * | 110 mA | 5.3 mW | 2021 [60] |
FBG | 1550 nm | 16 kHz | 82 dB | - | - | - | 12 mW | 2021 [61] |
FBG | 1572.02 nm | 15 kHz | >50 dB | 0.181 nm * | 22 GHz | 340 mA | 30 mW | 2022 [62] |
FBG | 1550 nm | <200 kHz | >45 dB | 4 nm | 499.5 GHz * | 100 mA | 10 mW | 2022 [63] |
FBG | 1550 nm | 1 kHz 30 kHz | - | 35 nm 30 nm | 4.4 THz * 3.7 THz * | - | 0.05 mW 10 mW | 2022 [64] |
FBG | 1064 nm | <132.5 GHz * | >15 dB | 5 nm | 1.3 THz * | 1 A | 0.67 W | 2022 [65] |
FBG | 1060 nm | <13.3 GHz * | - | 85 nm | 22.7 THz * | - | 5 mW | 2022 [66] |
FBG | 790 nm | <100 kHz | >40 dB | 0.3 nm | 144.2 GHz * | 200 mA | 20 mW | 2022 [67] |
Type | λB | Linewidth | SMSR | Tuning Range | Current | Power | Year | |
---|---|---|---|---|---|---|---|---|
WBG | 1542.383 nm | - | - | 0.37 nm * | 47 GHz | 180 mA | 15 mW | 2010 [68] |
WBG | 1537 nm | <38.1 GHz * | >35 dB | 20 nm | 2.5 THz * | 60 mA | 9 mW | 2011 [70] |
WBG | 838.8 nm | 85.3 GHz * | >40 dB | 20.8 nm | 8.9 THz * | 55 mA | 1.5 mW | 2012 [72] |
WBG | 1550 nm | 18.7 GHz * | >15 dB | - | - | 1 A | 0.2 W | 2012 [74] |
WBG | 830 nm | 87.1 GHz * | 35 dB | 31.7 nm | 13.8 THz * | - | - | 2013 [75] |
WBG | 1535 nm | 12.7 GHz * | 43 dB | 81.8 nm | 10.4 THz * | - | - | 2013 [76] |
WBG | 1064 nm | - | - | 0.29 nm | 77 GHz * | 95 mA | 15 mW | 2014 [77] |
WBG | 1649 nm | <1.1 GHz | >55 dB | 0.69 nm | 76.1 GHz * | 200 mA | 0.5 mW | 2014 [49] |
WBG | 1546 nm | 2 MHz | 55 dB | 8.1 nm | 1 THz * | - | - | 2015 [78] |
WBG | 1551 nm | - | >35 dB | 20 nm | 2.5 THz * | 75 mA | 20 mW | 2015 [79] |
WBG | 1650 nm | 200 kHz | - | - | - | 400 mA | 3.9 mW | 2015 [80] |
WBG | 1542 nm | - | 23.5 dB | 10 nm | 1.3 THz * | - | 312 mW | 2016 [82] |
WBG | 1556 nm | <3 MHz | >40 dB | 0.744 nm | 92.2 GHz * | 100 mA | 3 mW | 2018 [84] |
WBG | 1543 nm | <17 kHz | >60 dB | 0.16 nm | 20.2 GHz * | 200 mA | 15 mW | 2019 [86] |
WBG | 1544 nm | 320 Hz | >55 dB | - | - | 92 mA | 24 mW | 2019 [87] |
WBG | 795 nm | 207 kHz | 49 dB | 9 nm | 4.3 THz * | 100 mA | 2.5 mW | 2021 [89] |
WBG | 1550 nm | 31.2 GHz * | 10 dB | - | - | 300 mA | 7.5 mW | 2021 [90] |
WBG | 1552 nm | 4.15 kHz | 52 dB | 1.62 nm | 201.8 GHz * | 400 mA | 8.07 mW | 2021 [92] |
WBG | 1550 nm | 4.36 kHz | >49 dB | 0.6 nm | 80 GHz * | 208 mA | 6.53 mW | 2022 [94] |
WBG | 980 nm | - | - | 100 nm | 31.2 THz * | 100 mA | 50 mW | 2022 [95] |
WBG | 1528.8 nm | 5 MHz | >40 dB | 40.8 nm | 5.2 THz * | 240 mA | 20 mW * | 2022 [96] |
WBG | 1064 nm | - | 40 dB | 10 nm | 2.6 THz * | 200 mA | 120 mW | 2022 [97] |
WBG | 1060 nm | - | - | 40 nm | 10.7 THz * | 250 mA | 80 mW | 2022 [98] |
WBG | 760 nm | - | - | 33 nm | 17.1 THz * | 180 mA | 80 mW | 2022 [99] |
WBG | 1310 nm | - | >35 dB | 20 nm | 3.5 THz * | 150 mA | 40 mW | 2022 [100] |
WBG | 1550 nm | <25 kHz | >40 dB | 41 nm | 5.1 THz * | 500 mA | 60 mW * | 2022 [101] |
WBG | 1550 nm | <1 kHz | 40 dB | 35 nm | 4.4 THz * | - | 20 mW | 2022 [102] |
Type | VBG | FBG | WBG |
---|---|---|---|
Main Materials | Photo-Thermo-Refractive, Polymer | Glass, Crystal, Plastomer | Si, SiO2, Si3N4, LiNbO3, Polymer |
Linewidth Range | 2 kHz~1.5 THz | 125 Hz~312 GHz | 320 Hz~85.3 GHz |
Min linewidth | 2 kHz | 125 Hz | 320 Hz |
SMSR Range | 16 dB~57 dB | 15 dB~82 dB | 15 dB~60 dB |
Max SMSR | 57 dB | 82 dB | 60 dB |
Tuning Range | 0.011 nm~2 nm | 0.1 nm~85 nm | 0.16 nm~100 nm |
Max Tuning Range | 2 nm | 85 nm | 100 nm |
Output Power | 10 mW~106.4 W | 0.05 mW~670 mW | 0.5 mW~312 mW |
Maximum Output Power | 106.4 W | 670 mW | 312 mW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Shi, J.; Wei, L.; Ding, K.; Ma, Y.; Sun, K.; Li, Z.; Qu, Y.; Li, L.; Qiao, Z.; et al. Research Progress of Wide Tunable Bragg Grating External Cavity Semiconductor Lasers. Materials 2022, 15, 8256. https://doi.org/10.3390/ma15228256
Li X, Shi J, Wei L, Ding K, Ma Y, Sun K, Li Z, Qu Y, Li L, Qiao Z, et al. Research Progress of Wide Tunable Bragg Grating External Cavity Semiconductor Lasers. Materials. 2022; 15(22):8256. https://doi.org/10.3390/ma15228256
Chicago/Turabian StyleLi, Xuan, Junce Shi, Long Wei, Keke Ding, Yuhang Ma, Kangxun Sun, Zaijin Li, Yi Qu, Lin Li, Zhongliang Qiao, and et al. 2022. "Research Progress of Wide Tunable Bragg Grating External Cavity Semiconductor Lasers" Materials 15, no. 22: 8256. https://doi.org/10.3390/ma15228256
APA StyleLi, X., Shi, J., Wei, L., Ding, K., Ma, Y., Sun, K., Li, Z., Qu, Y., Li, L., Qiao, Z., Liu, G., Zeng, L., & Xu, D. (2022). Research Progress of Wide Tunable Bragg Grating External Cavity Semiconductor Lasers. Materials, 15(22), 8256. https://doi.org/10.3390/ma15228256