Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the Track. Nat. Nanotechnol. 2013, 8, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Fert, A.; Reyren, N.; Cros, V. Magnetic Skyrmions: Advances in Physics and Potential Applications. Nat. Rev. Mater. 2017, 2, 17031. [Google Scholar] [CrossRef]
- Finocchio, G.; Büttner, F.; Tomasello, R.; Carpentieri, M.; Kläui, M. Magnetic Skyrmions: From Fundamental to Applications. J. Phys. D. Appl. Phys. 2016, 49, 423001. [Google Scholar] [CrossRef]
- Lancaster, T. Skyrmions in Magnetic Materials; Springer: Berlin/Heidelberg, Germany, 2019; Volume 60, ISBN 9783319246499. [Google Scholar]
- Pappas, C.; Lelièvre-Berna, E.; Falus, P.; Bentley, P.M.; Moskvin, E.; Grigoriev, S.; Fouquet, P.; Farago, B. Chiral Paramagnetic Skyrmion-like Phase in MnSi. Phys. Rev. Lett. 2009, 102, 197202. [Google Scholar] [CrossRef] [PubMed]
- Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion Lattice in a Chiral Magnet. Science 2009, 323, 915. [Google Scholar] [CrossRef]
- Bogdanov, A.N.; Yablonskii, D.A. Thermodynamically Stable “Vortices” in Magnetically Ordered Crystals. The Mixed State of Magnets. Zh. Eksp. Teor. Fiz. 1989, 95, 178. [Google Scholar]
- Münzer, W.; Neubauer, A.; Adams, T.; Mühlbauer, S.; Franz, C.; Jonietz, F.; Georgii, R.; Böni, P.; Pedersen, B.; Schmidt, M.; et al. Skyrmion Lattice in the Doped Semiconductor Fe1−xCoxSi. Phys. Rev. B 2010, 81, 41203. [Google Scholar] [CrossRef]
- Yu, X.Z.; Kanazawa, N.; Onose, Y.; Kimoto, K.; Zhang, W.Z.; Ishiwata, S.; Matsui, Y.; Tokura, Y. Near Room-Temperature Formation of a Skyrmion Crystal in Thin-Films of the Helimagnet FeGe. Nat. Mater. 2011, 10, 106–109. [Google Scholar] [CrossRef]
- Shibata, K.; Yu, X.Z.; Hara, T.; Morikawa, D.; Kanazawa, N.; Kimoto, K.; Ishiwata, S.; Matsui, Y.; Tokura, Y. Towards Control of the Size and Helicity of Skyrmions in Helimagnetic Alloys by Spin-Orbit Coupling. Nat. Nanotechnol. 2013, 8, 723–728. [Google Scholar] [CrossRef]
- Kezsmarki, I.; Bordacs, S.; Milde, P.; Neuber, E.; Eng, L.M.; White, J.S.; Rønnow, H.M.; Dewhurst, C.D.; Mochizuki, M.; Yanai, K.; et al. Neel-Type Skyrmion Lattice with Confined Orientation in the Polar Magnetic Semiconductor GaV4S8. Nat. Mater. 2015, 14, 1116–1122. [Google Scholar] [CrossRef]
- Chen, G.; Mascaraque, A.; N’Diaye, A.T.; Schmid, A.K. Room Temperature Skyrmion Ground State Stabilized through Interlayer Exchange Coupling. App. Phys. Lett. 2015, 106, 242404. [Google Scholar] [CrossRef]
- Sun, L.; Cao, R.X.; Miao, B.F.; Feng, Z.; You, B.; Wu, D.; Zhang, W.; Hu, A.; Ding, H.F. Creating an Artificial Two-Dimensional Skyrmion Crystal by Nanopatterning. Phys. Rev. Lett. 2013, 110, 167201. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.J.; Upadhyaya, P.; Zhang, W.; Yu, G.Q.; Jungfleisch, M.B.; Fradin, F.Y.; Pearson, J.E.; Tserkovnyak, Y.; Wang, K.L.; Heinonen, O. Blowing Magnetic Skyrmion Bubbles. Science 2015, 349, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Litzius, K.; Kruger, B.; Im, M.Y.; Caretta, L.; Richter, K.; Mann, M.; Krone, A.; Reeve, R.M.; Weigand, M.; et al. Observation of Room-Temperature Magnetic Skyrmions and Their Current-Driven Dynamics in Ultrathin Metallic Ferromagnets. Nat. Mater. 2016, 15, 501–507. [Google Scholar] [CrossRef]
- Yu, G.Q.; Upadhyaya, P.; Li, X.; Li, W.; Kim, S.K.; Fan, Y.; Wong, K.L.; Tserkovnyak, Y.; Amiri, P.K.; Wang, K.L. Room-Temperature Creation and Spin-Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry. Nano. Lett. 2016, 16, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Boulle, O.; Vogel, J.; Yang, H.; Pizzini, S.; de Chaves, D.S.; Locatelli, A.; Mentes, T.O.; Sala, A.; Buda-Prejbeanu, L.D.; Klein, O.; et al. Room-Temperature Chiral Magnetic Skyrmions in Ultrathin Magnetic Nanostructures. Nat. Nanotechnol. 2016, 11, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Guang, Y.; Bykova, I.; Liu, Y.; Yu, G.; Goering, E.; Weigand, M.; Gräfe, J.; Kim, S.K.; Zhang, J.; Zhang, H.; et al. Creating Zero-Field Skyrmions in Exchange-Biased Multilayers through X-Ray Illumination. Nat. Commun. 2020, 11, 1–6. [Google Scholar] [CrossRef]
- Li, W.; Bykova, I.; Zhang, S.; Yu, G.; Tomasello, R.; Carpentieri, M.; Liu, Y.; Guang, Y.; Gräfe, J.; Weigand, M.; et al. Anatomy of Skyrmionic Textures in Magnetic Multilayers. Adv. Mater. 2019, 31, 1807683. [Google Scholar] [CrossRef]
- Cao, A.; Chen, R.; Wang, X.; Zhang, X.; Lu, S.; Yan, S.; Koopmans, B.; Zhao, W. Enhanced Interfacial Dzyaloshinskii—Moriya Interactions in Annealed Pt/Co/MgO Structures. Nanotechnology 2020, 31, 155705. [Google Scholar] [CrossRef]
- Cui, B.; Yu, D.; Shao, Z.; Liu, Y.; Wu, H.; Nan, P.; Zhu, Z.; Wu, C.; Guo, T.; Chen, P.; et al. Néel-Type Elliptical Skyrmions in a Laterally Asymmetric Magnetic Multilayer. Adv. Mater. 2021, 33, 2006924. [Google Scholar] [CrossRef]
- Moreau-Luchaire, C.; Mouta, S.C.; Reyren, N.; Sampaio, J.; Vaz, C.A.; Horne, N.V.; Bouzehouane, K.; Garcia, K.; Deranlot, C.; Warnicke, P.; et al. Additive Interfacial Chiral Interaction in Multilayers for Stabilization of Small Individual Skyrmions at Room Temperature. Nat. Nanotechnol. 2016, 11, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.T.; Bloemen, P.J.H.; Den Broeder, F.J.A.; De Vries, J.J. Magnetic Anisotropy in Metallic Multilayers. Rep. Prog. Phys. 1996, 59, 1409–1458. [Google Scholar] [CrossRef]
- Heide, M.; Bihlmayer, G.; Blügel, S. Dzyaloshinskii-Moriya Interaction Accounting for the Orientation of Magnetic Domains in Ultrathin Films: Fe/W(110). Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 140403. [Google Scholar] [CrossRef]
- Kiselev, N.S.; Bogdanov, A.N.; Schäfer, R.; Röler, U.K. Chiral Skyrmions in Thin Magnetic Films: New Objects for Magnetic Storage Technologies? J. Phys. D Appl. Phys. 2011, 44, 392001. [Google Scholar] [CrossRef]
- Rohart, S.; Thiaville, A. Skyrmion Confinement in Ultrathin Film Nanostructures in the Presence of Dzyaloshinskii-Moriya Interaction. Phys. Rev. B Condens. Matter Mater. Phys. 2013, 88, 184422. [Google Scholar] [CrossRef]
- Leonov, A.O.; Monchesky, T.L.; Romming, N.; Kubetzka, A.; Bogdanov, A.N.; Wiesendanger, R. The Properties of Isolated Chiral Skyrmions in Thin Magnetic Films. New J. Phys. 2016, 18, 065003. [Google Scholar] [CrossRef]
- Soumyanarayanan, A.; Raju, M.; Oyarce, A.L.G.; Tan, A.K.C.; Im, M.Y.; Petrovic, A.P.; Ho, P.; Khoo, K.H.; Tran, M.; Gan, C.K.; et al. Tunable Room-Temperature Magnetic Skyrmions in Ir/Fe/Co/Pt Multilayers. Nat. Mater. 2017, 16, 898–904. [Google Scholar] [CrossRef]
- Yang, H.; Boulle, O.; Cros, V.; Fert, A.; Chshiev, M. Controlling Dzyaloshinskii-Moriya Interaction via Chirality Dependent Atomic-Layer Stacking, Insulator Capping and Electric Field. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Akanda, M.R.K.; Park, I.J.; Lake, R.K. Interfacial Dzyaloshinskii-Moriya Interaction of Antiferromagnetic Materials. Phys. Rev. B 2020, 102, 224414. [Google Scholar] [CrossRef]
- Srivastava, T.; Schott, M.; Juge, R.; Křižáková, V.; Belmeguenai, M.; Roussigné, Y.; Bernand-Mantel, A.; Ranno, L.; Pizzini, S.; Chérif, S.M.; et al. Large-Voltage Tuning of Dzyaloshinskii-Moriya Interactions: A Route toward Dynamic Control of Skyrmion Chirality. Nano Lett. 2018, 18, 4871–4877. [Google Scholar] [CrossRef]
- Ma, X.; Yu, G.; Razavi, S.A.; Sasaki, S.S.; Li, X.; Hao, K.; Tolbert, S.H.; Wang, K.L.; Li, X. Dzyaloshinskii-Moriya Interaction across an Antiferromagnet-Ferromagnet Interface. Phys. Rev. Lett. 2017, 119, 027202. [Google Scholar] [CrossRef]
- Yang, Q.; Cheng, Y.; Li, Y.; Zhou, Z.; Liang, J.; Zhao, X.; Hu, Z.; Peng, R.; Yang, H.; Liu, M. Voltage Control of Skyrmion Bubbles for Topological Flexible Spintronic Devices. Adv. Electron. Mater. 2020, 6, 2000246. [Google Scholar] [CrossRef]
- Guang, Y.; Peng, Y.; Yan, Z.; Liu, Y.; Zhang, J.; Zeng, X.; Zhang, S.; Zhang, S.; Burn, D.M.; Jaouen, N.; et al. Electron Beam Lithography of Magnetic Skyrmions. Adv. Mater. 2020, 32, 2003003. [Google Scholar] [CrossRef] [PubMed]
- Olleros-Rodríguez, P.; Guerrero, R.; Camarero, J.; Chubykalo-Fesenko, O.; Perna, P. Intrinsic Mixed Bloch-Néel Character and Chirality of Skyrmions in Asymmetric Epitaxial Trilayers. ACS Appl. Mater. Interfaces 2020, 12, 25419–25427. [Google Scholar] [CrossRef] [PubMed]
- Hrabec, A.; Porter, N.A.; Wells, A.; Benitez, M.J.; Burnell, G.; McVitie, S.; McGrouther, D.; Moore, T.A.; Marrows, C.H. Measuring and Tailoring the Dzyaloshinskii-Moriya Interaction in Perpendicularly Magnetized Thin Films. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90, 020402. [Google Scholar] [CrossRef]
- He, M.; Peng, L.; Zhu, Z.; Li, G.; Cai, J.; Li, J.; Wei, H.; Gu, L.; Wang, S.; Zhao, T.; et al. Realization of Zero-Field Skyrmions with High-Density via Electromagnetic Manipulation in Pt/Co/Ta Multilayers. Appl. Phys. Lett. 2017, 111, 202403. [Google Scholar] [CrossRef]
- Peng, L.C.; Zhang, Y.; He, M.; Ding, B.; Wang, W.H.; Tian, H.F.; Li, J.Q.; Wang, S.G.; Cai, J.W.; Wu, G.H.; et al. Generation of High-Density Biskyrmions by Electric Current. npj Quantum Mater. 2017, 2, 30. [Google Scholar] [CrossRef][Green Version]
- Heinze, S.; von Bergmann, K.; Menzel, M.; Brede, J.; Kubetzka, A.; Wiesendanger, R.; Bihlmayer, G.; Blügel, S. Spontaneous Atomic-Scale Magnetic Skyrmion Lattice in Two Dimensions. Nat. Phys. 2011, 7, 713–718. [Google Scholar] [CrossRef]
- Von Bergmann, K.; Menzel, M.; Kubetzka, A.; Wiesendanger, R. Influence of the Local Atom Configuration on a Hexagonal Skyrmion Lattice. Nano Lett. 2015, 15, 3280–3285. [Google Scholar] [CrossRef]
- Romming, N.; Hanneken, C.; Menzel, M.; Bickel, J.E.; Wolter, B.; von Bergmann, K.; Kubetzka, A.; Wiesendanger, N.R.; Romming, C. Hanneken, Writing and Deleting Single Magnetic Skyrmions. Science 2013, 341, 636–639. [Google Scholar] [CrossRef]
- Hrabec, A.; Sampaio, J.; Belmeguenai, M.; Gross, I.; Weil, R.; Chérif, S.M.; Stashkevich, A.; Jacques, V.; Thiaville, A.; Rohart, S. Current-Induced Skyrmion Generation and Dynamics in Symmetric Bilayers. Nat. Commun. 2017, 8, 1–6. [Google Scholar] [CrossRef]
- Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Van Waeyenberge, B. The Design and Verification of MuMax3. AIP Adv. 2014, 4, 107133. [Google Scholar] [CrossRef]
- Pollard, S.D.; Garlow, J.A.; Yu, J.; Wang, Z.; Zhu, Y.; Yang, H. Observation of Stable Néel Skyrmions in Cobalt/palladium Multilayers with Lorentz Transmission Electron Microscopy. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Di, K.; Zhang, V.L.; Lim, H.S.; Ng, S.C.; Kuok, M.H.; Yu, J.; Yoon, J.; Qiu, X.; Yang, H. Direct Observation of the Dzyaloshinskii-Moriya Interaction in a Pt/Co/Ni Film. Phys. Rev. Lett. 2015, 114, 047201. [Google Scholar] [CrossRef] [PubMed]
- Belmeguenai, M.; Roussigné, Y.; Chérif, S.M.; Stashkevich, A.; Petrisor, T.; Nasui, M.; Gabor, M.S. Influence of the Capping Layer Material on the Interfacial Dzyaloshinskii-Moriya Interaction in Pt/Co/capping Layer Structures Probed by Brillouin Light Scattering. J. Phys. D Appl. Phys. 2019, 52, 125002. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, B.; Vernier, N.; Zhang, X.; Sall, M.; Xing, T.; Diez, L.H.; Hepburn, C.; Wang, L.; Durin, G.; et al. Enhancing Domain Wall Velocity through Interface Intermixing in W-CoFeB-MgO Films with Perpendicular Anisotropy. Appl. Phys. Lett. 2019, 115, 122404. [Google Scholar] [CrossRef]
- Diez, L.H.; Voto, M.; Casiraghi, A.; Belmeguenai, M.; Roussigné, Y.; Durin, G.; Lamperti, A.; Mantovan, R.; Sluka, V.; Jeudy, V.; et al. Enhancement of the Dzyaloshinskii-Moriya Interaction and Domain Wall Velocity through Interface Intermixing in Ta/CoFeB/MgO. Phys. Rev. B 2019, 99, 054431. [Google Scholar] [CrossRef]
- Wells, A.W.J.; Shepley, P.M.; Marrows, C.H.; Moore, T.A. Effect of Interfacial Intermixing on the Dzyaloshinskii-Moriya Interaction in Pt/Co/Pt. Phys. Rev. B 2017, 95, 054428. [Google Scholar] [CrossRef]
- Diez, L.H.; Liu, Y.; Gilbert, D.; Belmeguenai, M.; Vogel, J.; Pizzini, S.; Lamperti, A.; Mohammedi, J.; Laborieux, A.; Diez, L.H.; et al. Non-Volatile Ionic Modification of the Dzyaloshinskii Moriya Interaction. Phys. Rev. Appl. 2019, 12, 034005. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Xu, T.; Gao, Y.; Hu, C.; Cai, J.; Zhang, Y. Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature. Materials 2022, 15, 8272. https://doi.org/10.3390/ma15228272
He M, Xu T, Gao Y, Hu C, Cai J, Zhang Y. Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature. Materials. 2022; 15(22):8272. https://doi.org/10.3390/ma15228272
Chicago/Turabian StyleHe, Min, Tiankuo Xu, Yang Gao, Chaoqun Hu, Jianwang Cai, and Ying Zhang. 2022. "Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature" Materials 15, no. 22: 8272. https://doi.org/10.3390/ma15228272
APA StyleHe, M., Xu, T., Gao, Y., Hu, C., Cai, J., & Zhang, Y. (2022). Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature. Materials, 15(22), 8272. https://doi.org/10.3390/ma15228272