Effect of TiO2 Additives on the Stabilization of h-YbFeO3 and Promotion of Photo-Fenton Activity of o-YbFeO3/h-YbFeO3/r-TiO2 Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of YbFeO3-Based Photocatalysts
2.1.1. Synthesis of the Titanyl Nitrate TiO(NO3)2 Solution
2.1.2. Synthesis of o-YbFeO3/h-YbFeO3/TiO2 Nanocomposites
2.2. Characterization
2.3. Photocatalytic Experiments
3. Results and Discussion
3.1. SEM, EDXS, and Elemental Mapping
3.2. PXRD
3.3. HR-TEM and SAED
3.4. Low-Temperature N2 Sorption–Desorption
3.5. DRS
3.6. Photo-Fenton-like Photocatalytic Activity
3.7. Mechanism of Photo-Fenton-like Activity over o-YbFeO3/h-YbFeO3/TiO2 Nanocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, S.; Hossain, M.K. Classification and Properties of Nanoparticles; Elsevier Ltd.: Amsterdam, The Netherlands, 2022; ISBN 9780128242728. [Google Scholar]
- Rahman, M.T.; Hoque, A.; Azmi, M.M.; Gafur, M.A.; Khan, R.A.; Hossain, M.K. Fe2O3 nanoparticles dispersed unsaturated polyester resin based nanocomposites: Effect of gamma radiation on mechanical properties. Radiat. Eff. Defects Solids 2019, 174, 480–493. [Google Scholar] [CrossRef]
- Rahman, M.; Hoque, A.; Gafur, M.; Khan, R.A.; Hossain, M.K. Study on the mechanical, electrical and optical properties of metal-oxide nanoparticles dispersed unsaturated polyester resin nanocomposites. Results Phys. 2019, 13, 102264. [Google Scholar] [CrossRef]
- Sławiński, W.; Przeniosło, R.; Sosnowska, I.; Suard, E. Spin reorientation and structural changes in NdFeO3. J. Phys. Condens. Matter 2005, 17, 4605–4614. [Google Scholar] [CrossRef]
- Ma, X.; Yuan, N.; Luo, X.; Chen, Y.; Kang, B.; Ren, W.; Zhang, J.; Cao, S. Field tunable spin switching in perovskite YbFeO3 single crystal. Mater. Today Commun. 2021, 27, 102438. [Google Scholar] [CrossRef]
- Downie, L.J.; Goff, R.J.; Kockelmann, W.; Forder, S.D.; Parker, J.E.; Morrison, F.D.; Lightfoot, P. Structural, magnetic and electrical properties of the hexagonal ferrites MFeO3 (M=Y, Yb, In). J. Solid State Chem. 2012, 190, 52–60. [Google Scholar] [CrossRef]
- Andrei, I. Ivanets synthesis, structure and morphology of composites based on magnesium ferrite and carbon nitride. Dokl. Natl. Acad. Sci. Belarus 2021, 65, 178–184. [Google Scholar]
- Karpov, O.N.; Tomkovich, M.V.; Tugova, E.A. Formation of Nd1–xBixFeO3 Nanocrystals under Conditions of Glycine-Nitrate Synthesis. Russ. J. Gen. Chem. 2018, 88, 2133–2138. [Google Scholar] [CrossRef]
- Nguyen, A.; Nguyen, V.; Mittova, I.; Mittova, V.; Viryutina, E.; Hoang, C.C.T.; Nguyen, T.L.T.; Bui, X.; Do, T. Synthesis and magnetic properties of PrFeO3 nanopowders by the co-precipitation method using ethanol. Nanosyst. Phys. Chem. Math. 2020, 11, 468–473. [Google Scholar] [CrossRef]
- Albadi, Y.; Sirotkin, A.A.; Semenov, V.G.; Abiev, R.S.; Popkov, V.I. Synthesis of superparamagnetic GdFeO3 nanoparticles using a free impinging-jets microreactor. Bull. Acad. Sci. USSR Div. Chem. Sci. 2020, 69, 1290–1295. [Google Scholar] [CrossRef]
- Yastrebov, S.G.; Lomanova, N.A. Specific Features in the Interaction between BiFeO3 Nanoclusters Synthesized by Solution Combustion. Tech. Phys. Lett. 2021, 47, 5–8. [Google Scholar] [CrossRef]
- Polat, O.; Coskun, M.; Coskun, F.M.; Zlamal, J.; Kurt, B.Z.; Durmus, Z.; Caglar, M.; Turut, A. Co doped YbFeO3: Exploring the electrical properties via tuning the doping level. Ionics 2019, 25, 4013–4029. [Google Scholar] [CrossRef]
- Kondrashkova, I.S.; Martinson, K.D.; Zakharova, N.V.; Popkov, V.I. Synthesis of Nanocrystalline HoFeO3 Photocatalyst via Heat Treatment of Products of Glycine-Nitrate Combustion. Russ. J. Gen. Chem. 2018, 88, 2465–2471. [Google Scholar] [CrossRef]
- Martinson, K.; Kondrashkova, I.; Omarov, S.; Sladkovskiy, D.; Kiselev, A.; Kiseleva, T.; Popkov, V. Magnetically recoverable catalyst based on porous nanocrystalline HoFeO3 for processes of n-hexane conversion. Adv. Powder Technol. 2019, 31, 402–408. [Google Scholar] [CrossRef]
- Kostyukhin, E.M.; Kustov, A.L.; Evdokimenko, N.V.; Bazlov, A.I.; Kustov, L.M. Hydrothermal microwave-assisted synthesis of LaFeO3 catalyst for N2O decomposition. J. Am. Ceram. Soc. 2020, 104, 492–503. [Google Scholar] [CrossRef]
- Wu, S.; Lin, Y.; Yang, C.; Du, C.; Teng, Q.; Ma, Y.; Zhang, D.; Nie, L.; Zhong, Y. Enhanced activation of peroxymonosulfte by LaFeO3 perovskite supported on Al2O3 for degradation of organic pollutants. Chemosphere 2019, 237, 124478. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Zhang, Y. Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln=La, Sm) nanoparticles by synergistic catalysis. Mater. Res. Bull. 2014, 50, 18–22. [Google Scholar] [CrossRef]
- Ivanets, A.I. Catalytic Degradation of Methylene Blue on Magnesium Ferrite Doped with Lanthanides. J. Water Chem. Technol. 2021, 43, 193–199. [Google Scholar] [CrossRef]
- Shifrina, Z.B.; Bronstein, L.M. Magnetically Recoverable Catalysts: Beyond Magnetic Separation. Front. Chem. 2018, 6, 298. [Google Scholar] [CrossRef] [Green Version]
- Albadi, Y.; Martinson, K.; Shvidchenko, A.; Buryanenko, I.; Semenov, V.; Popkov, V. Synthesis of GdFeO3 nanoparticles via low-temperature reverse co-precipitation: The effect of strong agglomeration on the magnetic behavior. Nanosyst. Phys. Chem. Math. 2020, 11, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Jurgons, R.; Seliger, C.; Hilpert, A.; Trahms, L.; Odenbach, S.; Alexiou, C. Drug loaded magnetic nanoparticles for cancer therapy. J. Phys. Condens. Matter 2006, 18, S2893–S2902. [Google Scholar] [CrossRef]
- Darwish, M.S.A.; Kim, H.; Lee, H.; Ryu, C.; Yoon, J. Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method. Nanomaterials 2019, 9, 1176. [Google Scholar] [CrossRef] [PubMed]
- De Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomed. 2008, 3, 133–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Qin, H.; Lv, W.; Zhang, H.; Hu, J. Gas sensors based on ytterbium ferrites nanocrystalline powders for detecting acetone with low concentrations. Sens. Actuators B Chem. 2017, 246, 9–19. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, H.; Zhang, H.; Lü, W.; Hu, J. CO2 gas sensors based on Yb1−xCaxFeO3 nanocrystalline powders. J. Rare Earths 2017, 35, 602–609. [Google Scholar] [CrossRef]
- Fortuño-Morte, M.; Serna-Gallén, P.; Beltrán-Mir, H.; Cordoncillo, E. A new series of environment-friendly reddish inorganic pigments based on AFeO3 (A = Ln, Y) with high NIR solar reflectance. J. Mater. 2021, 7, 1061–1073. [Google Scholar] [CrossRef]
- Solomonov, A.V.; Marfin, Y.; Rumyantsev, E.V. Design and applications of dipyrrin-based fluorescent dyes and related organic luminophores: From individual compounds to supramolecular self-assembled systems. Dye. Pigment. 2019, 162, 517–542. [Google Scholar] [CrossRef]
- Tikhanova, S.M.; Lebedev, L.A.; Martinson, K.D.; Chebanenko, M.I.; Buryanenko, I.V.; Semenov, V.G.; Nevedomskiy, V.N.; Popkov, V.I. The synthesis of novel heterojunction h-YbFeO3/o-YbFeO3 photocatalyst with enhanced Fenton-like activity under visible-light. New J. Chem. 2021, 45, 1541–1550. [Google Scholar] [CrossRef]
- Li, C.; Soh, K.C.K.; Wu, P. Formability of ABO3 perovskites. J. Alloy. Compd. 2004, 372, 40–48. [Google Scholar] [CrossRef]
- Kumar, M.S.V.; Kuribayashi, K.; Kitazono, K. Effect of Oxygen Partial Pressure on the Formation of Metastable Phases from an Undercooled YbFeO3Melt Using an Aerodynamic Levitator. J. Am. Ceram. Soc. 2009, 92, 903–910. [Google Scholar] [CrossRef]
- Hosokawa, S.; Jeon, H.-J.; Inoue, M. Thermal stabilities of hexagonal and orthorhombic YbFeO3 synthesized by solvothermal method and their catalytic activities for methane combustion. Res. Chem. Intermed. 2011, 37, 291–296. [Google Scholar] [CrossRef]
- Tikhanova, S.M.; Lebedev, L.A.; Kirillova, S.A.; Tomkovich, M.V.; Popkov, V.I. Synthesis, structure, and visible-light-driven activity of o-YbFeO3/h-YbFeO3/CeO2 photocatalysts. Chim. Techno Acta 2021, 8, 20218407. [Google Scholar] [CrossRef]
- Popkov, V.; Almjasheva, O.; Nevedomskiy, V.; Sokolov, V.; Gusarov, V. Crystallization behavior and morphological features of YFeO3 nanocrystallites obtained by glycine-nitrate combustion. Nanosyst. Phys. Chem. Math. 2015, 6, 866–874. [Google Scholar] [CrossRef]
- Ivanets, A.I.; Srivastava, V.; Roshchina, M.Y.; Sillanpää, M.; Prozorovich, V.G.; Pankov, V.V. Magnesium ferrite nanoparticles as a magnetic sorbent for the removal of Mn2+, Co2+, Ni2+ and Cu2+ from aqueous solution. Ceram. Int. 2018, 44, 9097–9104. [Google Scholar] [CrossRef]
- Voskanyan, A.A.; Chan, K.-Y.; Li, C.-Y.V. Colloidal Solution Combustion Synthesis: Toward Mass Production of a Crystalline Uniform Mesoporous CeO2 Catalyst with Tunable Porosity. Chem. Mater. 2016, 28, 2768–2775. [Google Scholar] [CrossRef] [Green Version]
- Deganello, F.; Testa, M.L.; La Parola, V.; Longo, A.; Tavares, A.C. LaFeO3-based nanopowders prepared by a soft–hard templating approach: The effect of silica texture. J. Mater. Chem. A 2014, 2, 8438–8447. [Google Scholar] [CrossRef]
- Seroglazova, A.S.; Chebanenko, M.I.; Popkov, V.I. Synthesis, structure, and photo-Fenton activity of PrFeO3-TiO2 mesoporous nanocomposites. Kondens. Condens. Matter Interphases 2021, 23, 548–560. [Google Scholar] [CrossRef]
- Tao, Y.-G.; Xu, Y.-Q.; Pan, J.; Gu, H.; Qin, C.-Y.; Zhou, P. Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis. Mater. Sci. Eng. B 2012, 177, 1664–1671. [Google Scholar] [CrossRef]
- Eswar, N.K.; Ramamurthy, P.C.; Madras, G. High photoconductive combustion synthesized TiO2derived nanobelts for photocatalytic water purification under solar irradiation. New J. Chem. 2015, 39, 6040–6051. [Google Scholar] [CrossRef] [Green Version]
- Sklyarova, A.; Popkov, V.I.; Pleshakov, I.V.; Matveev, V.V.; Štěpánková, H.; Chlan, V. Peculiarities of 57 Fe NMR Spectrum in Micro- and Nanocrystalline Europium Orthoferrites. Appl. Magn. Reson. 2020, 51, 1701–1710. [Google Scholar] [CrossRef]
- Martinson, K.; Ivanov, V.; Chebanenko, M.; Panchuk, V.; Semenov, V.; Popkov, V. Facile combustion synthesis of TbFeO3 nanocrystals with hexagonal and orthorhombic structure. Nanosyst. Phys. Chem. Math. 2019, 10, 694–700. [Google Scholar] [CrossRef]
- Popkov, V.I.; Martinson, K.D.; Kondrashkova, I.S.; Enikeeva, M.O.; Nevedomskiy, V.N.; Panchuk, V.V.; Semenov, V.G.; Volkov, M.P.; Pleshakov, I.V. SCS-assisted production of EuFeO3 core-shell nanoparticles: Formation process, structural features and magnetic behavior. J. Alloys Compd. 2021, 859, 157812. [Google Scholar] [CrossRef]
- Rai, R.C.; Horvatits, C.; Mckenna, D.; Du Hart, J. Structural studies and physical properties of hexagonal-YbFeO3 thin films. AIP Adv. 2019, 9, 015019. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wei, Y.; Wang, J.; Luo, D.; Fan, L.; Wu, J. Controllable fabrication of Bi2O3/TiO2 heterojunction with excellent visible-light responsive photocatalytic performance. Appl. Surf. Sci. 2017, 423, 119–130. [Google Scholar] [CrossRef]
- Zhang, D.; Dong, S. Challenges in band alignment between semiconducting materials: A case of rutile and anatase TiO2. Prog. Nat. Sci. 2019, 29, 277–284. [Google Scholar] [CrossRef]
- Fan, X.; Hao, H.; Shen, X.; Chen, F.; Zhang, J. Removal and degradation pathway study of sulfasalazine with Fenton-like reaction. J. Hazard. Mater. 2011, 190, 493–500. [Google Scholar] [CrossRef]
- Makhotkina, O.; Preis, S.; Parkhomchuk, E. Water delignification by advanced oxidation processes: Homogeneous and heterogeneous Fenton and H2O2 photo-assisted reactions. Appl. Catal. B Environ. 2008, 84, 821–826. [Google Scholar] [CrossRef]
- Punjabi, P.B. Fenton and Photo-Fenton Processes; Udaipur: Rajasthan, India, 2018; ISBN 9780128104996. [Google Scholar]
- Liu, J.; He, F.; Chen, L.; Qin, X.; Zhao, N.; Huang, Y.; Peng, Y. Novel hexagonal-YFeO3/α-Fe2O3 heterojunction composite nanowires with enhanced visible light photocatalytic activity. Mater. Lett. 2016, 165, 263–266. [Google Scholar] [CrossRef]
Ring № | D-Spacing, Å | Ref. d-Spacing, Å | Hkl | Phase |
---|---|---|---|---|
1 | 2.742 | 2.780 | 0 2 0 | o-YbFeO3 |
2 | 2.471 | 2.505 | 1 0 1 | r-TiO2 |
3 | 1.950 | 1.951 | 0 0 6 | h-YbFeO3 |
4 | 1.605 | 1.586 | 1 3 2 | o-YbFeO3 |
5 | 1.373 | 1.376 | 3 2 2 | o-YbFeO3 |
Eg, ⋼B | χ, ⋼B; | EVB, ⋼B | ECB, ⋼B | |
---|---|---|---|---|
h- YbFeO3 | 2.2 | 5.57 | 2.17 | −0.03 |
o- YbFeO3 | 2.55 | 5.57 | 2.35 | −0.20 |
TiO2 | 3.06 | 5.81 | 2.84 | −0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tikhanova, S.; Seroglazova, A.; Chebanenko, M.; Nevedomskiy, V.; Popkov, V. Effect of TiO2 Additives on the Stabilization of h-YbFeO3 and Promotion of Photo-Fenton Activity of o-YbFeO3/h-YbFeO3/r-TiO2 Nanocomposites. Materials 2022, 15, 8273. https://doi.org/10.3390/ma15228273
Tikhanova S, Seroglazova A, Chebanenko M, Nevedomskiy V, Popkov V. Effect of TiO2 Additives on the Stabilization of h-YbFeO3 and Promotion of Photo-Fenton Activity of o-YbFeO3/h-YbFeO3/r-TiO2 Nanocomposites. Materials. 2022; 15(22):8273. https://doi.org/10.3390/ma15228273
Chicago/Turabian StyleTikhanova, Sofia, Anna Seroglazova, Maria Chebanenko, Vladimir Nevedomskiy, and Vadim Popkov. 2022. "Effect of TiO2 Additives on the Stabilization of h-YbFeO3 and Promotion of Photo-Fenton Activity of o-YbFeO3/h-YbFeO3/r-TiO2 Nanocomposites" Materials 15, no. 22: 8273. https://doi.org/10.3390/ma15228273
APA StyleTikhanova, S., Seroglazova, A., Chebanenko, M., Nevedomskiy, V., & Popkov, V. (2022). Effect of TiO2 Additives on the Stabilization of h-YbFeO3 and Promotion of Photo-Fenton Activity of o-YbFeO3/h-YbFeO3/r-TiO2 Nanocomposites. Materials, 15(22), 8273. https://doi.org/10.3390/ma15228273