Research Progress of Steels for Nuclear Reactor Pressure Vessels
Abstract
:1. Background
1.1. Development of Steel for Nuclear Pressure Vessels
1.2. Service Environment of Steel for Nuclear Pressure Vessel
2. Hot Deformation Behavior of Nuclear Pressure Vessel
3. Mechanical Properties of Steels for Nuclear Pressure Vessel
3.1. Effect of Alloying Elements on Mechanical Properties
3.2. Effect of Heat Treatment on Mechanical Properties
3.3. Effect of Carbides Size on Mechanical Properties
3.4. Effect of Hydrogen Charging Conditions on Mechanical Properties
4. Irradiation Properties of Steels for Nuclear Pressure Vessel
5. Corrosion Properties of Steels for Nuclear Pressure Vessel
6. Study on Thermal Aging of Steel for Nuclear Pressure Vessel
7. Fatigue Properties of Steels for Nuclear Pressure Vessel
7.1. Internal Factors
7.2. External Factors
8. Conclusions and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viswanathan, R.; Sarver, J.; Tanzosh, J.M. Boiler Materials for Ultra-Supercritical Coal Power Plants—Steamside Oxidation. J. Mater. Eng. Perform. 2006, 15, 255–274. [Google Scholar] [CrossRef]
- Cui, R.Y.; Hultman, N.; Cui, D.; McJeon, H.; Yu, S.; Edwards, M.R.; Sen, A.; Song, K.; Bowman, C.; Clarke, L.; et al. A plant-by-plant strategy for high-ambition coal power phaseout in China. Nat. Commun. 2021, 12, 1468. [Google Scholar] [CrossRef] [PubMed]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Yeh, J.; Huang, J.; Kuo, R. Temperature effects on low-cycle fatigue behavior of SA533B steel in simulated reactor coolant environments. Mater. Chem. Phys. 2007, 104, 125–132. [Google Scholar] [CrossRef]
- Huang, J.; Hwang, J.; Yeh, J.; Chen, C.; Kuo, R. Dynamic strain aging and grain size reduction effects on the fatigue resistance of SA533B3 steels. J. Nucl. Mater. 2004, 324, 140–151. [Google Scholar] [CrossRef]
- Xiong, Q.; Li, H.; Lu, Z.; Chen, J.; Xiao, Q.; Ma, J.; Ru, X. Characterization of microstructure of A508III/309L/308L weld and oxide films formed in deaerated high-temperature water. J. Nucl. Mater. 2018, 498, 227–240. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Im, Y.-R.; Lee, H.-C.; Oh, Y.J.; Hong, J.H. Effects of alloying elements on mechanical and fracture properties of base metals and simulated heat-affected zones of SA 508 steels. Met. Mater. Trans. A 2001, 32, 903–911. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Acharyya, S.; Dhar, S.; Chattopadhyay, J. Calibration of Beremin Parameters for 20MnMoNi55 Steel and Prediction of Reference Temperature (T0) for Different Thicknesses and a/W Ratios. J. Fail. Anal. Prev. 2018, 18, 1534–1547. [Google Scholar] [CrossRef]
- Sarkar, A.; Kumawat, B.K.; Chakravartty, J. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel. J. Nucl. Mater. 2015, 462, 273–279. [Google Scholar] [CrossRef]
- Chowdhury, T.; Sivaprasad, S.; Bar, H.N.; Tarafder, S.; Bandyopadhyay, N.R. Cyclic fracture behaviour of 20MnMoNi55 steel at room and elevated temperatures. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 813–827. [Google Scholar] [CrossRef]
- Pesci, R.; Inal, K.; Masson, R. Three scale modeling of the behavior of a 16MND5-A508 bainitic steel: Stress distribution at low temperatures. Mater. Sci. Eng. A 2009, 527, 376–386. [Google Scholar] [CrossRef] [Green Version]
- He, X.-K.; Xie, C.-S.; Xiao, L.-J.; Luo, Y.; Lu, D.; Liu, Z.-D.; Wang, X.-T. Microstructure and impact toughness of 16MND5 reactor pressure vessel steel manufactured by electrical additive manufacturing. J. Iron Steel Res. Int. 2020, 27, 992–1004. [Google Scholar] [CrossRef]
- Kudrya, A.V.; Nikulin, S.A.; Nikolaev, Y.A.; Arsenkin, A.M.; Sokolovskaya, E.A.; Skorodumov, S.V.; Chernobaeva, A.A.; Kuz’Ko, E.I.; Khoreva, E.G. Nonuniformity of the ductility of 15X2HMΦA low-alloy steel. Steel Transl. 2009, 39, 742–747. [Google Scholar] [CrossRef]
- Fekete, B.; Bereczki, P.; Trampus, P. Low Cycle Fatigue Behavior of VVER-440 Reactor Pressure Vessel Steels at Isothermal Condition. Mater. Sci. Forum 2015, 812, 47–52. [Google Scholar] [CrossRef]
- Xie, C.; Liu, Z.; He, X.; Wang, X.; Qiao, S. Effect of martensite–austenite constituents on impact toughness of pre-tempered MnNiMo bainitic steel. Mater. Charact. 2020, 161, 110139. [Google Scholar] [CrossRef]
- Mandal, P.; Lalvani, H.; Barrow, A.; Adams, J. Microstructural Evolution of SA508 Grade 3 Steel during Hot Deformation. J. Mater. Eng. Perform. 2020, 29, 1015–1033. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Yang, B. Study on hot deformation behavior and processing maps of SA508-IV steel for novel nuclear reactor pressure vessels. Vacuum 2018, 155, 637–644. [Google Scholar] [CrossRef]
- Yan, G.; Han, L.; Li, C.; Luo, X.; Gu, J. Effect of Macrosegregation on the Microstructure and Mechanical Properties of a Pressure-Vessel Steel. Met. Mater. Trans. A 2017, 48, 3470–3481. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Z.; He, X.; Qiao, S.; Xie, C. Effect of microstructure on the impact toughness and temper embrittlement of SA508Gr.4N steel for advanced pressure vessel materials. Sci. Rep. 2018, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Kim, M.; Yoon, J.; Hong, J. Characterization of high strength and high toughness Ni–Mo–Cr low alloy steels for nuclear application. Int. J. Press. Vessel. Pip. 2010, 87, 74–80. [Google Scholar] [CrossRef]
- Park, S.-G.; Lee, K.-H.; Min, K.-D.; Kim, M.-C.; Lee, B.-S. Influence of the thermodynamic parameters on the temper embrittlement of SA508 Gr.4N Ni–Cr–Mo low alloy steel with variation of Ni, Cr and Mn contents. J. Nucl. Mater. 2012, 426, 1–8. [Google Scholar] [CrossRef]
- Park, S.G.; Kim, M.C.; Lee, B.S.; Wee, D.M. Correlation of the thermodynamic calculation and the experimental observation of Ni-Mo-Cr low alloy steel changing Ni, Mo, and Cr contents. J. Nucl. Mater. 2010, 407, 126–135. [Google Scholar] [CrossRef]
- Kim, M.-C.; Park, S.-G.; Lee, K.-H.; Lee, B.-S. Comparison of fracture properties in SA508 Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials. Int. J. Press. Vessel. Pip. 2015, 131, 60–66. [Google Scholar] [CrossRef]
- ASTM A508/A508M-18; Standard Specification for Quenched and Tempered Vacuum-Treated Carbon and Alloy Steel Forgings for Pressure Vessels. ASTM International: West Conshohocken, PA, USA, 2018.
- Bai, X.; Wu, S.; Liaw, P.K.; Shao, L.; Gigax, J. Effect of Heavy Ion Irradiation Dosage on the Hardness of SA508-IV Reactor Pressure Vessel Steel. Metals 2017, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Chao, Y.J.; Luo, Z. An Assessment of Mechanical Properties of A508-3 Steel Used in Chinese Nuclear Reactor Pressure Vessels. J. Press. Vessel Technol. 2015, 137, 031402. [Google Scholar] [CrossRef]
- Xiao, Q.; Lu, Z.; Chen, J.; Yao, M.; Chen, Z.; Ejaz, A. The effects of temperature and aeration on the corrosion of A508III low alloy steel in boric acid solutions at 25–95 °C. J. Nucl. Mater. 2016, 480, 88–99. [Google Scholar] [CrossRef]
- Lu, C.; He, Y.; Gao, Z.; Yang, J.; Jin, W.; Xie, Z. Microstructural evolution and mechanical characterization for the A508–3 steel before and after phase transition. J. Nucl. Mater. 2017, 495, 103–110. [Google Scholar] [CrossRef]
- Lindgren, K.; Boåsen, M.; Stiller, K.; Efsing, P.; Thuvander, M. Evolution of precipitation in reactor pressure vessel steel welds under neutron irradiation. J. Nucl. Mater. 2017, 488, 222–230. [Google Scholar] [CrossRef]
- Zhong, W.; Tong, Z.; Ning, G.; Zhang, C.; Lin, H.; Yang, W. The fatigue behavior of irradiated Reactor Pressure Vessel steel. Eng. Fail. Anal. 2017, 82, 840–847. [Google Scholar] [CrossRef]
- IAE Agency. Effects of Nickel on Irradiation Embrittlement of Light Water Reactor Pressure Vessel Steels; IAEA-TECDOC-1441; International Atomic Energy Agency: Vienna, Austria, 2005. [Google Scholar]
- Gasparrini, C.; Xu, A.; Short, K.; Wei, T.; Davis, J.; Palmer, T.; Bhattacharyya, D.; Edwards, L.; Wenman, M. Micromechanical testing of unirradiated and helium ion irradiated SA508 reactor pressure vessel steels: Nanoindentation vs. in-situ microtensile testing. Mater. Sci. Eng. A 2020, 796, 139942. [Google Scholar] [CrossRef]
- Nanstad, R.K.; Odette, G.R.; Almirall, N.; Robertson, J.P.; Server, W.L.; Yamamoto, T.; Wells, P. Effects of ATR-2 Irradiation to High Fluence on Nine RPV Surveillance Materials; U.S. Department of Energy Office of Scientific and Technical Information: Washington, DC, USA, 2017. [Google Scholar]
- Ballesteros, A.; Ahlstrand, R.; Bruynooghe, C.; Chernobaeva, A.; Kevorkyan, Y.; Erak, D.; Zurko, D. Irradiation temperature, flux and spectrum effects. Prog. Nucl. Energy 2011, 53, 756–759. [Google Scholar] [CrossRef]
- Shtrombakh, Y.I.; Gurovich, B.A.; Kuleshova, E.A.; Maltsev, D.A.; Fedotova, S.V.; Chernobaeva, A.A. Thermal ageing mechanisms of VVER-1000 reactor pressure vessel steels. J. Nucl. Mater. 2014, 452, 348–358. [Google Scholar] [CrossRef]
- Pareige, P.; Russell, K.; Stoller, R.; Miller, M. Influence of long-term thermal aging on the microstructural evolution of nuclear reactor pressure vessel materials: An atom probe study. J. Nucl. Mater. 1997, 250, 176–183. [Google Scholar] [CrossRef]
- Fukakura, J.; Asano, M.; Kikuchi, M.; Ishikawa, M. Effect of thermal aging on fracture toughness of RPV steel. Nucl. Eng. Des. 1993, 144, 423–429. [Google Scholar] [CrossRef]
- Xing, R.S.; Chen, X.; Yu, D.J. Evolution of Impact Properties of 16MND5 Forgings for Nuclear Reactor Pressure Vessel during Thermal Aging at 500 °C. Key Eng. Mater. 2019, 795, 54–59. [Google Scholar] [CrossRef]
- Timofeev, B. Assessment of the first generation RPV state after designed lifetime. Int. J. Press. Vessel. Pip. 2004, 81, 703–712. [Google Scholar] [CrossRef]
- Dai, X.; Chen, Y.-F.; Wang, P.; Zhang, L.; Yang, B.; Chen, L.-S. Mechanical and fatigue properties of SA508-IV steel used for nuclear reactor pressure vessels. J. Iron Steel Res. Int. 2022, 29, 1312–1321. [Google Scholar] [CrossRef]
- Chen, X.; Ren, B.; Yu, D.; Xu, B.; Zhang, Z.; Chen, G. Uniaxial low cycle fatigue behavior for pre-corroded 16MND5 bainitic steel in simulated pressurized water reactor environment. J. Nucl. Mater. 2018, 504, 267–276. [Google Scholar] [CrossRef]
- Mu, S.; Li, Y.; Song, D.; Xu, B.; Chen, X. Low Cycle Fatigue Behavior and Failure Mechanism of Wire Arc Additive Manufacturing 16MND5 Bainitic Steel. J. Mater. Eng. Perform. 2021, 30, 4911–4924. [Google Scholar] [CrossRef]
- Dai, X.; Yang, B. Hot Deformation Behavior and Microstructural Evolution of SA508-IV Steel. Steel Res. Int. 2018, 89, 105776. [Google Scholar] [CrossRef]
- Dong, D.; Chen, F.; Cui, Z. A physically-based constitutive model for SA508-III steel: Modeling and experimental verification. Mater. Sci. Eng. A 2015, 634, 103–115. [Google Scholar] [CrossRef]
- Sui, D.-S.; Chen, F.; Zhang, P.-P.; Cui, Z.-S. Numerical Simulation of Microstructure Evolution for SA508-3 Steel During Inhomogeneous Hot Deformation Process. J. Iron Steel Res. Int. 2014, 21, 1022–1029. [Google Scholar] [CrossRef]
- Qiao, S.-B.; Liu, Z.-D.; He, X.-K.; Xie, C.-S. Metadynamic recrystallization behaviors of SA508Gr.4N reactor pressure vessel steel during hot compressive deformation. J. Iron Steel Res. Int. 2020, 28, 46–57. [Google Scholar] [CrossRef]
- Qiao, S.-B.; He, X.-K.; Xie, C.-S.; Liu, Z.-D. Static recrystallization behavior of SA508Gr.4N reactor pressure vessel steel during hot compressive deformation. J. Iron Steel Res. Int. 2021, 28, 604–612. [Google Scholar] [CrossRef]
- Dong, D.-Q.; Chen, F.; Cui, Z.-S. Static recrystallization behavior of SA508-III steel during hot deformation. J. Iron Steel Res. Int. 2016, 23, 466–474. [Google Scholar] [CrossRef]
- Sun, M.; Hao, L.; Li, S.; Li, D.; Li, Y. Modeling flow stress constitutive behavior of SA508-3 steel for nuclear reactor pressure vessels. J. Nucl. Mater. 2011, 418, 269–280. [Google Scholar] [CrossRef]
- Park, S.-G.; Lee, K.-H.; Min, K.-D.; Kim, M.-C.; Lee, B.-S. Characterization of phase fractions and misorientations on tempered Bainitic/Martensitic Ni-Cr-Mo low alloy RPV steel with various Ni content. Met. Mater. Int. 2013, 19, 49–54. [Google Scholar] [CrossRef]
- Lee, K.-H.; Kim, M.-C.; Lee, B.-S.; Wee, D.-M. Analysis of the master curve approach on the fracture toughness properties of SA508 Gr.4N Ni–Mo–Cr low alloy steels for reactor pressure vessels. Mater. Sci. Eng. A 2010, 527, 3329–3334. [Google Scholar] [CrossRef]
- Lee, K.H.; Park, S.G.; Kim, M.C.; Lee, B.S.; Wee, D.M. Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Cr contents. Mater. Sci. Eng. 2011, 529, 156–163. [Google Scholar] [CrossRef]
- Ahn, Y.-S.; Kim, H.-D.; Byun, T.-S.; Oh, Y.-J.; Kim, G.-M.; Hong, J.-H. Application of intercritical heat treatment to improve toughness of SA508 Cl.3 reactor pressure vessel steel. Nucl. Eng. Des. 1999, 194, 161–177. [Google Scholar] [CrossRef]
- Lee, K.-H.; Park, S.-G.; Kim, M.-C.; Lee, B.-S. Cleavage fracture toughness of tempered martensitic Ni–Cr–Mo low alloy steel with different martensite fraction. Mater. Sci. Eng. A 2012, 534, 75–82. [Google Scholar] [CrossRef]
- Yan, G.; Sun, Y.; Gu, J.; Li, C. Effect of Initial Microstructure on Mechanical Properties of Pressure Vessel Steel after Intercritical Heat Treatment. Met. Sci. Heat Treat. 2021, 63, 70–79. [Google Scholar] [CrossRef]
- Dai, X.; Peng, T.; Chen, Y.; Chen, X.; Yang, B. The correlation between martensite-austenite islands evolution and fatigue behavior of SA508-IV steel. Int. J. Fatigue 2020, 139, 105776. [Google Scholar] [CrossRef]
- Li, C.; Han, L.; Yan, G.; Liu, Q.; Luo, X.; Gu, J. Time-dependent temper embrittlement of reactor pressure vessel steel: Correlation between microstructural evolution and mechanical properties during tempering at 650 °C. J. Nucl. Mater. 2016, 480, 344–354. [Google Scholar] [CrossRef]
- Li, C.; Han, L.; Luo, X.; Liu, Q.; Gu, J. Effect of tempering temperature on the microstructure and mechanical properties of a reactor pressure vessel steel. J. Nucl. Mater. 2016, 477, 246–256. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Hwang, B.; Lee, B.; Lee, C. Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel. Acta Mater. 2002, 50, 4755–4762. [Google Scholar] [CrossRef]
- Wu, S.; Jin, H.; Sun, Y.; Cao, L. Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels. Int. J. Press. Vessel. Pip. 2014, 123, 92–98. [Google Scholar] [CrossRef]
- Liu, J.H.; Wang, L.; Liu, Y.; Song, X.; Luo, J.; Yuan, D. Effects of hydrogen on fracture toughness and fracture behaviour of SA508-III steel. Mater. Res. Innov. 2014, 18, S4-255–S4-259. [Google Scholar] [CrossRef]
- Liu, J.-H.; Wang, L.; Liu, Y.; Song, X.; Luo, J.; Yuan, D. Effects of H content on the tensile properties and fracture behavior of SA508-III steel. Int. J. Miner. Met. Mater. 2015, 22, 820–828. [Google Scholar] [CrossRef]
- Singh, R.; Singh, A.; Singh, P.K.; Mahajan, D.K. Effect of hydrogen on short crack propagation in SA508 Grade 3 Class I low alloy steel under cyclic loading. Procedia Struct. Integr. 2019, 14, 930–936. [Google Scholar] [CrossRef]
- Wu, X.; Kim, I. Effects of strain rate and temperature on tensile behavior of hydrogen-charged SA508 Cl.3 pressure vessel steel. Mater. Sci. Eng. A 2003, 348, 309–318. [Google Scholar] [CrossRef]
- Stanisz, P.; Oettingen, M.; Cetnar, J. Development of a Trajectory Period Folding Method for Burnup Calculations. Energies 2022, 15, 2245. [Google Scholar] [CrossRef]
- Cetnar, J.; Stanisz, P.; Oettingen, M. Linear Chain Method for Numerical Modelling of Burnup Systems. Energies 2021, 14, 1520. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Q.; Song, L.; Zhang, W.; She, M.; Zhu, F. Microstructure Evolution of Reactor Pressure Vessel A508-3 Steel under High-Dose Heavy Ion Irradiation. Crystals 2022, 12, 1091. [Google Scholar] [CrossRef]
- Slugen, V.; Brodziansky, T.; Veternikova, J.S.; Sojak, S.; Petriska, M.; Hinca, R.; Farkas, G. Positron Annihilation Study of RPV Steels Radiation Loaded by Hydrogen Ion Implantation. Materials 2022, 15, 7091. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science: Metals and Alloys; Springer: Berlin /Heidelberg, Germany, 2007. [Google Scholar]
- Shimodaira, M.; Toyama, T.; Yoshida, K.; Inoue, K.; Ebisawa, N.; Tomura, K.; Yoshiie, T.; Konstantinović, M.J.; Gérard, R.; Nagai, Y. Contribution of irradiation-induced defects to hardening of a low-copper reactor pressure vessel steel. Acta Mater. 2018, 155, 402–409. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, J.; Lin, P.; Liu, M. Irradiation tensile property and fracture toughness evaluation study of A508-3 steel based on multi-scale approach. Ann. Nucl. Energy 2020, 138, 107157. [Google Scholar] [CrossRef]
- Marini, B.; Averty, X.; Wident, P.; Forget, P.; Barcelo, F. Effect of the bainitic and martensitic microstructures on the hardening and embrittlement under neutron irradiation of a reactor pressure vessel steel. J. Nucl. Mater. 2015, 465, 20–27. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Tong, Z.; Qian, G.; Zhong, W.; Wang, C.; Yang, W.; Berto, F. Irradiation effect on impact fracture behavior of A508-3 steel in ductile-to-brittle transition range. Eng. Fail. Anal. 2019, 97, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-H.; Kasada, R.; Kimura, A.; Lee, B.-S.; Suh, D.-W.; Lee, H.-C. Effect of nickel content on the neutron irradiation embrittlement of Ni-Mo-Cr steels. Met. Mater. Int. 2013, 19, 1203–1208. [Google Scholar] [CrossRef]
- Mamivand, M.; Wells, P.; Ke, H.; Shu, S.; Odette, G.R.; Morgan, D. CuMnNiSi precipitate evolution in irradiated reactor pressure vessel steels: Integrated Cluster Dynamics and experiments. Acta Mater. 2019, 180, 199–217. [Google Scholar] [CrossRef]
- Laot, M.; Naziris, K.; Bakker, T.; D’Agata, E.; Martin, O.; Kolluri, M. Effectiveness of Thermal Annealing in Recovery of Tensile Properties of Compositionally Tailored PWR Model Steels Irradiated in LYRA-10. Metals 2022, 12, 904. [Google Scholar] [CrossRef]
- Calvar, M.L.; Curières, I.D. Corrosion issues in pressurized water reactor (PWR) systems. Nucl. Corros. Sci. Eng. 2012, 15, 473–547. [Google Scholar]
- NRC. Davis-Besse Reactor Pressure Vessel Head Degradation. Overview, Lessons Learned, and NRC Actions Based on Lessons Learned; NUREG/BR-0353, Rev. 1; NRC: Rockville, MD, USA, 2008. [Google Scholar]
- Park, J.H.; Chopra, O.K.; Natesan, K.; Shack, W.J. Boric acid corrosion of light water reactor pressure vessel materials. In Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, Salt Lake City, UT, USA, 14–18 August 2005. [Google Scholar]
- Xia, D.; Zhou, C.; Liu, Y.; Wang, J.; Fu, C.; Wang, K.; Li, M. Mechanical Properties and Corrosion Resistance of SA508-4 Low Carbon Alloy Steel. Electrochemistry 2013, 81, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.S.; Hwang, S.S.; Kim, D.J.; Lee, J.Y. Corrosion behavior of SA508 low alloy steels exposed to aerated boric acid solutions. Nucl. Eng. Technol. 2019, 52, 1222–1230. [Google Scholar] [CrossRef]
- Druce, S.; Gage, G.; Jordan, G. Effect of ageing on properties of pressure vessel steels. Acta Met. 1986, 34, 641–652. [Google Scholar] [CrossRef]
- Wang, W.; Liu, S.; Xu, G.; Zhang, B.; Huang, Q. Effect of Thermal Aging on Microstructure and Mechanical Properties of China Low-Activation Martensitic Steel at 550 °C. Nucl. Eng. Technol. 2016, 48, 518–524. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.; Kim, J.H.; Jang, C.; Lee, J.G.; Kim, T.S. Low-cycle fatigue behaviors of two heats of SA508 Gr.1a low alloy steel in 310 °C air and deoxygenated water–Effects of dynamic strain aging and microstructures. Mater. Sci. Eng. 2013, 580, 41–50. [Google Scholar] [CrossRef]
- Singh, R.; Singh, A.; Singh, P.K.; Mahajan, D.K. Role of prior austenite grain boundaries in short fatigue crack growth in hydrogen charged RPV steel. Int. J. Press. Vessel. Pip. 2019, 171, 242–252. [Google Scholar] [CrossRef]
- Cho, H.C.; Jang, H.; Kim, B.K.; Kim, I.S.; Jang, C.H. Effect of Cyclic Strain Rate on Environmental Fatigue Behaviors of SA508 Gr.1a Low Alloy Steel in 310 °C Deoxygenated Water. Adv. Mater. Res. 2007, 26, 1121–1124. [Google Scholar] [CrossRef]
- Achilles, R.; Bulloch, J. The influence of waveform on the fatigue crack growth behaviour of SA508 cl III RPV steel in various environments. Int. J. Press. Vessel. Pip. 1987, 30, 375–389. [Google Scholar] [CrossRef]
- Seifert, H.; Ritter, S. Corrosion fatigue crack growth behaviour of low-alloy reactor pressure vessel steels under boiling water reactor conditions. Corros. Sci. 2008, 50, 1884–1899. [Google Scholar] [CrossRef]
- Wu, X.; Han, E.; Ke, W.; Katada, Y. Effects of loading factors on environmental fatigue behavior of low-alloy pressure vessel steels in simulated BWR water. Nucl. Eng. Des. 2007, 237, 1452–1459. [Google Scholar] [CrossRef]
- Fekete, B.; Trampus, P. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels. J. Nucl. Mater. 2015, 464, 394–404. [Google Scholar] [CrossRef]
- Abdullah, M.; Hongneng, C.; Liang, F. Strategies Regarding High-Temperature Applications w.r.t Strength, Toughness, and Fatigue Life for SA508 Alloy. Materials 2021, 14, 1953. [Google Scholar] [CrossRef]
- Singh, R.; Singh, A.; Singh, P.K.; Mahajan, D.K. Effect of microstructural features on short fatigue crack growth behaviour in SA508 Grade 3 Class I low alloy steel. Int. J. Press. Vessel. Pip. 2020, 185, 104136. [Google Scholar] [CrossRef]
- Gao, J.; Liu, C.; Tan, J.; Zhang, Z.; Wu, X.; Han, E.-H.; Shen, R.; Wang, B.; Ke, W. Environmental fatigue correction factor model for domestic nuclear-grade low-alloy steel. Nucl. Eng. Technol. 2021, 53, 2600–2609. [Google Scholar] [CrossRef]
- Huang, J.; Yeh, J.; Kuo, R.; Jeng, S.; Young, M. Fatigue crack growth behavior of reactor pressure vessel steels in air and high-temperature water environments. Int. J. Press. Vessel. Pip. 2008, 85, 772–781. [Google Scholar] [CrossRef]
- Huang, J.Y.; Yeh, J.J.; Kuo, R.C.; Hwang, J.R. Effect of dynamic strain aging on fatigue crack growth behaviour of reactor pressure vessel steels. Mater. Sci. Technol. 2006, 22, 944–954. [Google Scholar] [CrossRef]
- Tice, D. Assessment of environmentally assisted cracking in PWR pressure vessel steels. Int. J. Press. Vessel. Pip. 1991, 47, 113–126. [Google Scholar] [CrossRef]
- Herter, K.-H.; Schuler, X.; Weissenberg, T. Fatigue Behavior of Nuclear Materials Under Air and Environmental Conditions. In Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, Paris, France, 14–18 July 2013. [Google Scholar] [CrossRef]
- Atkinson, J.; Yu, J.; Chen, Z.-Y. An analysis of the effects of sulphur content and potential on corrosion fatigue crack growth in reactor pressure vessel steels. Corros. Sci. 1996, 38, 755–765. [Google Scholar] [CrossRef]
- Lee, K.-H.; Kim, M.-C.; Yang, W.-J.; Lee, B.-S. Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn–Mo–Ni low alloy steels. Mater. Sci. Eng. A 2013, 565, 158–164. [Google Scholar] [CrossRef]
- Qiao, Y. Modeling of resistance curve of high-angle grain boundary in Fe-3 wt.% Si alloy. Mater. Sci. Eng. 2003, 361, 350–357. [Google Scholar] [CrossRef]
- Hwang, B.; Kim, Y.G.; Lee, S.; Kim, Y.M.; Kim, N.J.; Yoo, J.Y. Effective grain size and charpy impact properties of high-toughness X70 pipeline steels. Met. Mater. Trans. A 2005, 36, 2107–2114. [Google Scholar] [CrossRef] [Green Version]
- Bai, Q.; Ma, Y.; Kang, X.; Xing, S.; Chen, Z. Study on the welding continuous cooling transformation and weldability of SA508Gr4 steel for nuclear pressure vessels. Int. J. Mater. Res. 2017, 108, 99–107. [Google Scholar] [CrossRef]
- Shi, K.K.; Xie, H.; Zheng, B.; Fu, X.L. Fatigue and fracture mechanical behavior for Chinese A508-3 steel at room temperature. IOP Conf. Ser. Mater. Sci. Eng. 2018, 372, 012003. [Google Scholar] [CrossRef]
Materials | C | Si | Mn | Cr | Ni | Mo |
---|---|---|---|---|---|---|
A212B | ≤0.30 | 0.15–0.30 | 0.85–1.20 | - | - | - |
A302B | ≤0.26 | 0.13–0.32 | 1.10–1.55 | - | - | 0.41–0.64 |
A533B | ≤0.25 | 0.15–0.30 | 1.51–1.50 | - | 0.40–0.70 | 0.45–0.60 |
A508-2 | ≤0.27 | 0.15–0.35 | 0.50–0.90 | 0.25–0.45 | 0.50–0.90 | 0.55–0.70 |
US A508-3 | ≤0.26 | 0.15–0.40 | 1.20–1.50 | ≤0.25 | 0.40–1.00 | 0.45–0.55 |
20MnMoNi55 | 0.17–0.23 | 0.15–0.30 | 1.20–1.50 | ≤0.20 | 0.50–1.00 | 0.40–0.55 |
22NiMoCr37 | ≤0.20 | 0.15–0.30 | 1.20–1.40 | ≤0.40 | 0.40–1.00 | 0.40–0.55 |
16MND5 | ≤0.20 | 0.10–0.30 | 1.15–1.55 | ≤0.25 | 0.50–0.80 | 0.45–0.55 |
SFVV3 | 0.15–0.22 | 0.15–0.35 | 1.40–1.50 | 0.06–0.20 | 0.70–1.00 | 0.46–0.64 |
Chinese A508-3 | 0.19 | 0.19–0.27 | 1.20–1.43 | 0.06–0.12 | 0.73–0.79 | 0.48–0.51 |
15X2HMΦA | 0.13–0.18 | 0.17–0.37 | 0.30–0.60 | 1.80–2.30 | 1.00–1.50 | 0.50–0.70 |
A508-4 | ≤0.23 | ≤0.40 | 0.20–0.40 | 1.50–2.0 | 2.80–3.90 | 0.40–0.60 |
Elements | Grade 1 | Grade 2 | Grade 3 | Grade 4N | Grade 5 | Grade 6 |
---|---|---|---|---|---|---|
C (max) | 0.35 | 0.27 | 0.25 | 0.23 | 0.23 | 0.28–0.33 |
Si (max) | 0.40 | 0.40 | 0.40 | 0.40 | 0.30 | 0.35 |
Mn | 0.40–1.05 | 0.50–1.00 | 1.20–1.50 | 0.20–0.40 | 0.20–0.40 | 0.75–1.15 |
Cr | ≤0.25 | 0.25–0.45 | ≤0.25 | 1.50–2.00 | 1.50–2.00 | 0.70–1.00 |
Ni | ≤0.40 | 0.50–1.00 | 0.40–1.00 | 2.80–3.90 | 2.80–3.90 | 0.75–0.95 |
Mo | ≤0.10 | 0.55–0.70 | 0.45–0.60 | 0.40–0.60 | 0.40–0.60 | 0.30–0.45 |
Reactor Type | Flux, m−2·s−1 (E > 1 MeV) | Lifetime * Fluence, m−2 (E > 1 MeV) |
---|---|---|
WWER-440 core weld | 1.2 × 1015 | 1.1 × 1024 |
WWER-440 maximum | 1.5 × 1015 | 1.6 × 1024 |
WWER-1000 | 3−4 × 1014 | 3.7 × 1023 |
PWR (W) | 4 × 1014 | 4 × 1023 |
PWR (B&W) | 1.2 × 1014 | 1.2 × 1023 |
BWR | 4 × 1013 | 4 × 1022 |
Mechanical Properties | Grades 1 and 1a | Grades 2 Class 1 and 3 Class 1 | Grades 2 Class 2 and 3 Class 2 | Grades 4N Class 1 and 5 Class 1 | Grades 4N Class 2 and 5 Class 2 | Grades 6 Class 1 | Grades 6 Class 2 |
---|---|---|---|---|---|---|---|
Tensile strength, ksi [MPa] | 70–95 [485–655] | 80–105 [550–725] | 90–115 [620–795] | 105–130 [725–895] | 115–140 [795–965] | 85–110 [585–760] | 95–120 [655–825] |
Yield strength, min [0.2% offset], ksi [MPa] | 36 [250] | 50 [345] | 65 [450] | 85 [585] | 100 [690] | 60 [415] | 75 [515] |
Elongation in 2 in. or 50 mm, min, % | 20 | 18 | 16 | 18 | 16 | 20 | 18 |
Reduction of area, min, % | 38 | 38 | 35 | 45 | 45 | 35 | 35 |
Minimum average value of set of three specimens, ft·lbf [J] | 15 [20] (4.4 °C) | 30 [41] (4.4 °C) | 35 [48] (21 °C) | 35 [48] (−29 °C) | 20 [27] (−59 °C) | ||
Minimum value of one specimen, ft lbf [J] | 10 [14] (4.4 °C) | 25 [34] (4.4 °C) | 30 [41] (21 °C) | 30 [41] (−29 °C) | 15 [20] (−59 °C) |
C | Ni | Cr | Mo | Fe | |
---|---|---|---|---|---|
KL4-Ref. | 0.21 | 3.59 | 1.79 | 0.54 | Bal. |
KL4-Ni 1 | 0.22 | 2.66 | 1.81 | 0.53 | Bal. |
KL4-Ni 2 | 0.21 | 4.82 | 1.83 | 0.54 | Bal. |
KL4-Cr 1 | 0.21 | 3.65 | 1.04 | 0.54 | Bal. |
KL4-Cr 2 | 0.21 | 3.63 | 2.47 | 0.53 | Bal. |
KL4-Mo 1 | 0.21 | 3.57 | 1.87 | 0.11 | Bal. |
KL4-Mo 2 | 0.21 | 3.7 | 1.86 | 1.02 | Bal. |
KL4-Ref. | KL4-Ni 1 | KL4-Ni 2 | KL4-Cr 1 | KL4-Cr 2 | KL4-Mo 1 | KL4-Mo 2 | |
---|---|---|---|---|---|---|---|
YS (MPa) | 581 | 535 | 677 | 585 | 590 | 533 | 633 |
UTS (MPa) | 750 | 698 | 820 | 762 | 762 | 735 | 808 |
USE (J) | 226 | 262 | 207 | 189 | 216 | 231 | 184 |
T28J (°C) | −140 | −94 | −176 | −77 | −149 | −146 | −126 |
T41J (°C) | −128 | −87 | −161 | −65 | −138 | −136 | −114 |
Cool Rate (°C/min) | Martensite (%) | Bainite (%) | Austenite (%) | Yield Strength (MPa) | Tensile Strength (MPa) | USE (J) |
---|---|---|---|---|---|---|
3 | 0 | 94 | 6 | 531 | 740 | 200 |
28.2 | 69 | 13 | 18 | 545 | 759 | 224 |
960 | 99 | 0 | 1 | 573 | 742 | 269 |
Irradiated | Bainite | Bainite–Martensite | Martensite |
---|---|---|---|
Un-irradiated | 638/−54 | 698/−77 | 751/−116 |
Irradiated | 717/−4 | 786/−2 | 838/−59 |
Increase/shift | 12/50 | 13/75 | 12/57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Dai, J.; Li, Y.; Dai, X.; Xie, C.; Li, L.; Chen, L. Research Progress of Steels for Nuclear Reactor Pressure Vessels. Materials 2022, 15, 8761. https://doi.org/10.3390/ma15248761
Zhou L, Dai J, Li Y, Dai X, Xie C, Li L, Chen L. Research Progress of Steels for Nuclear Reactor Pressure Vessels. Materials. 2022; 15(24):8761. https://doi.org/10.3390/ma15248761
Chicago/Turabian StyleZhou, Linjun, Jie Dai, Yang Li, Xin Dai, Changsheng Xie, Linze Li, and Liansheng Chen. 2022. "Research Progress of Steels for Nuclear Reactor Pressure Vessels" Materials 15, no. 24: 8761. https://doi.org/10.3390/ma15248761
APA StyleZhou, L., Dai, J., Li, Y., Dai, X., Xie, C., Li, L., & Chen, L. (2022). Research Progress of Steels for Nuclear Reactor Pressure Vessels. Materials, 15(24), 8761. https://doi.org/10.3390/ma15248761