Development of Quaternary InAlGaN Barrier Layer for High Electron Mobility Transistor Structures
Abstract
:1. Introduction
2. Samples
3. Results
3.1. Secondary-Ion Mass Spectrometry (SIMS) of the Heterostructure
3.2. X-ray Diffraction (XRD) Analysis of the Heterostructure
- (i).
- we made expected calculations of the gas-phase with surplus indium and aluminum precursors only, without flowing the gallium,
- (ii).
- we grew 30–50 nm thick calibration samples on GaN/Sapphire increasing the growth temperature and checking for lattice-matching to GaN in-plane lattice compatibility by HR-XRD,
- (iii).
- we applied the preferred high growth temperature and the growth rate to the HEMT final structure, growing a 9 nm thick LM-InAlGaN barrier.
3.3. Band Diagram of the Heterostructure
3.4. Two-Dimensional Electron Gas (2DEG)
3.5. Schottky Contact to 2DEG
3.6. Photoluminescence of the Heterostructure
3.7. Application of the Heterostructure for Electronic Devices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahn, J.; Kim, D.; Park, K.-H.; Yoo, G.; Heo, J. Pt-Decorated Graphene Gate AlGaN/GaN MIS-HEMT for Ultrahigh Sensitive Hydrogen Gas Detection. IEEE Trans. Electron Devices 2021, 68, 1255–1261. [Google Scholar] [CrossRef]
- Nguyen, V.C.; Kim, K.; Kim, H. Performance Optimization of Nitrogen Dioxide Gas Sensor Based on Pd-AlGaN/GaN HEMTs by Gate Bias Modulation. Micromachines 2021, 12, 400. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Feng, W.; Ding, Q.; Zhu, Y.; Zhang, Z.; Li, X.; Qin, H.; Zhang, J.; Li, X.; Shangguan, Y.; et al. Smaller Antenna-Gate Gap for Higher Sensitivity of GaN/AlGaN HEMT Terahertz Detectors. Appl. Phys. Lett. 2020, 116, 161109. [Google Scholar] [CrossRef]
- Yang, L.; Yao, W.; Liu, Y.; Wang, L.; Dai, Y.; Liu, H.; Wang, F.; Ren, Y.; Wu, Z.; Liu, Y.; et al. Low Capacitance AlGaN/GaN Based Air-Bridge Structure Planar Schottky Diode with a Half through-Hole. AIP Adv. 2020, 10, 045219. [Google Scholar] [CrossRef]
- Bauer, M.; Ramer, A.; Chevtchenko, S.A.; Osipov, K.Y.; Cibiraite, D.; Pralgauskaite, S.; Ikamas, K.; Lisauskas, A.; Heinrich, W.; Krozer, V.; et al. A High-Sensitivity AlGaN/GaN HEMT Terahertz Detector With Integrated Broadband Bow-Tie Antenna. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 430–444. [Google Scholar] [CrossRef]
- Jorudas, J.; Malakauskaitė, J.; Subačius, L.; Janonis, V.; Jakštas, V.; Kovalevskij, V.; Kašalynas, I.; Malakauskaite, J.; Subacius, L.; Janonis, V.; et al. Development of the Planar AlGaN/GaN Bow-Tie Diodes for Terahertz Detection. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar] [CrossRef]
- El Fatimy, A.; Dyakonova, N.; Meziani, Y.; Otsuji, T.; Knap, W.; Vandenbrouk, S.; Madjour, K.; Théron, D.; Gaquiere, C.; Poisson, M.A.; et al. AlGaN/GaN High Electron Mobility Transistors as a Voltage-Tunable Room Temperature Terahertz Sources. J. Appl. Phys. 2010, 107, 24504. [Google Scholar] [CrossRef] [Green Version]
- Janonis, V.; Pashnev, D.; Grigelionis, I.; Korotieiev, V.; Balagula, R.M.; Minkevicius, L.; Jorudas, J.; Alexeeva, N.; Subacius, L.; Valušis, G.; et al. Electrically-Pumped THz Emitters Based on Plasma Waves Excitation in III-Nitride Structures. In Terahertz Emitters, Receivers, and Applications XI; Razeghi, M., Baranov, A.N., Eds.; SPIE: Washington, DC, USA, 2020; Volume 11499, p. 8. [Google Scholar] [CrossRef]
- Romanczyk, B.; Mishra, U.K.; Zheng, X.; Guidry, M.; Li, H.; Hatui, N.; Wurm, C.; Krishna, A.; Ahmadi, E.; Keller, S. W-Band Power Performance of SiN-Passivated N-Polar GaN Deep Recess HEMTs. IEEE Electron Device Lett. 2020, 41, 349–352. [Google Scholar] [CrossRef]
- Shinohara, K.; Regan, D.C.; Tang, Y.; Corrion, A.L.; Brown, D.F.; Wong, J.C.; Robinson, J.F.; Fung, H.H.; Schmitz, A.; Oh, T.C.; et al. Scaling of GaN HEMTs and Schottky Diodes for Submillimeter-Wave MMIC Applications. IEEE Trans. Electron Devices 2013, 60, 2982–2996. [Google Scholar] [CrossRef]
- Hassan, A.; Savaria, Y.; Sawan, M. GaN Integration Technology, an Ideal Candidate for High-Temperature Applications: A Review. IEEE Access 2018, 6, 78790–78802. [Google Scholar] [CrossRef]
- Jorudas, J.; Šimukovič, A.; Dub, M.; Sakowicz, M.; Prystawko, P.; Indrišiūnas, S.; Kovalevskij, V.; Rumyantsev, S.; Knap, W.; Kašalynas, I. AlGaN/GaN on SiC Devices without a GaN Buffer Layer: Electrical and Noise Characteristics. Micromachines 2020, 11, 1131. [Google Scholar] [CrossRef]
- Kuzmík, J. InAlN/(In)GaN High Electron Mobility Transistors: Some Aspects of the Quantum Well Heterostructure Proposal. Semicond. Sci. Technol. 2002, 17, 540–544. [Google Scholar] [CrossRef]
- Kuzmík, J.; Kostopoulos, A.; Konstantinidis, G.; Carlin, J.F.; Georgakilas, A.; Pogany, D. InAlN/GaN HEMTs: A First Insight into Technological Optimization. IEEE Trans. Electron Devices 2006, 53, 422–426. [Google Scholar] [CrossRef]
- Kuzmík, J. Power Electronics on InAlN/(In)GaN: Prospect for a Record Performance. IEEE Electron Device Lett. 2001, 22, 510–512. [Google Scholar] [CrossRef]
- Maier, D.; Alomari, M.; Grandjean, N.; Carlin, J.-F.; Diforte-Poisson, M.-A.; Dua, C.; Delage, S.; Kohn, E. InAlN/GaN HEMTs for Operation in the 1000 C Degrees Regime: A First Experiment. IEEE Electron Device Lett. 2012, 33, 985–987. [Google Scholar] [CrossRef]
- Medjdoub, F.; Carlin, J.-F.; Gonschorek, M.; Feltin, E.; Py, M.A.; Ducatteau, D.; Gaquiere, C.; Grandjean, N.; Kohn, E. Can InAlN/GaN Be an Alternative to High Power/High Temperature AlGaN/GaN Devices? In Proceedings of the 2006 International Electron Devices Meeting, San Francisco, CA, USA, 11–13 December 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Gonschorek, M.; Carlin, J.-F.; Feltin, E.; Py, M.A.; Grandjean, N.; Darakchieva, V.; Monemar, B.; Lorenz, M.; Ramm, G. Two-Dimensional Electron Gas Density in Al1−xInxN/AlN/GaN Heterostructures (0.03 ≤ x ≤ 0.23). J. Appl. Phys. 2008, 103, 093714. [Google Scholar] [CrossRef] [Green Version]
- Medjdoub, F.; Alomari, M.; Carlin, J.F.; Gonschorek, M.; Feltin, E.; Py, M.A.; Grandjean, N.; Kohn, E. Barrier-Layer Scaling of InAlN/GaN HEMTs. IEEE Electron Device Lett. 2008, 29, 422–425. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, H.; Arulkumaran, S.; Egawa, T.; Zhang, B.; Ishikawa, H. Demonstration of Undoped Quaternary AlInGaN/GaN Heterostructure Field-Effect Transistor on Sapphire Substrate. Appl. Phys. Lett. 2005, 86, 223510. [Google Scholar] [CrossRef]
- Wang, R.; Li, G.; Karbasian, G.; Guo, J.; Song, B.; Yue, Y.; Hu, Z.; Laboutin, O.; Cao, Y.; Johnson, W.; et al. Quaternary Barrier InAlGaN HEMTs With FT/Fmax of 230/300 GHz. IEEE Electron Device Lett. 2013, 34, 378–380. [Google Scholar] [CrossRef]
- Lecourt, F.; Agboton, A.; Ketteniss, N.; Behmenburg, H.; Defrance, N.; Hoel, V.; Kalisch, H.; Vescan, A.; Heuken, M.; de Jaeger, J.-C. Power Performance at 40 GHz on Quaternary Barrier InAlGaN/GaN HEMT. IEEE Electron Device Lett. 2013, 34, 978–980. [Google Scholar] [CrossRef]
- Shur, M.S. Terahertz Plasmonic Technology. IEEE Sens. J. 2021, 21, 12752–12763. [Google Scholar] [CrossRef]
- Shur, M.; Aizin, G.; Otsuji, T.; Ryzhii, V. Plasmonic Field-Effect Transistors (TeraFETs) for 6G Communications. Sensors 2021, 21, 7907. [Google Scholar] [CrossRef] [PubMed]
- Pashnev, D.; Korotyeyev, V.V.; Jorudas, J.; Kaplas, T.; Janonis, V.; Urbanowicz, A.; Kašalynas, I. Experimental Evidence of Temperature Dependent Effective Mass in AlGaN/GaN Heterostructures Observed via THz Spectroscopy of 2D Plasmons. Appl. Phys. Lett. 2020, 117, 162101. [Google Scholar] [CrossRef]
- Pashnev, D.; Kaplas, T.; Korotyeyev, V.; Janonis, V.; Urbanowicz, A.; Jorudas, J.; Kašalynas, I. Terahertz Time-Domain Spectroscopy of Two-Dimensional Plasmons in AlGaN/GaN Heterostructures. Appl. Phys. Lett. 2020, 117, 051105. [Google Scholar] [CrossRef]
- Sai, P.; Jorudas, J.; Dub, M.; Sakowicz, M.; Jakštas, V.; But, D.B.; Prystawko, P.; Cywinski, G.; Kašalynas, I.; Knap, W.; et al. Low Frequency Noise and Trap Density in GaN/AlGaN Field Effect Transistors. Appl. Phys. Lett. 2019, 115, 183501. [Google Scholar] [CrossRef]
- Schroder, D.K. Contact Resistance and Schottky Barriers. In Semiconductor Material and Device Characterization; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 127–184. [Google Scholar]
- Grigelionis, I.; Jorudas, J.; Jakštas, V.; Janonis, V.; Kašalynas, I.; Prystawko, P.; Kruszewski, P.; Leszczyński, M. Terahertz Electroluminescence of Shallow Impurities in AlGaN/GaN Heterostructures at 20 K and 110 K Temperature. Mater. Sci. Semicond. Process. 2019, 93, 280–283. [Google Scholar] [CrossRef]
- Kim, J.; Lochner, Z.; Ji, M.-H.; Choi, S.; Kim, H.J.; Kim, J.S.; Dupuis, R.D.; Fischer, A.M.; Juday, R.; Huang, Y.; et al. Origins of Unintentional Incorporation of Gallium in InAlN Layers during Epitaxial Growth, Part II: Effects of Underlying Layers and Growth Chamber Conditions. J. Cryst. Growth 2014, 388, 143–149. [Google Scholar] [CrossRef]
- Naresh-Kumar, G.; Vilalta-Clemente, A.; Pandey, S.; Skuridina, D.; Behmenburg, H.; Gamarra, P.; Patriarche, G.; Vickridge, I.; di Forte-Poisson, M.A.; Vogt, P.; et al. Multicharacterization Approach for Studying InAl(Ga)N/Al(Ga)N/GaN Heterostructures for High Electron Mobility Transistors. AIP Adv. 2014, 4, 127101. [Google Scholar] [CrossRef]
- Hiroki, M.; Oda, Y.; Watanabe, N.; Maeda, N. Unintentional Ga Incorporation in Metalorganic Vapor Phase Epitaxy of In-Containing III-Nitride Semiconductors. J. Cryst. Growth 2013, 382, 36–40. [Google Scholar] [CrossRef]
- Rahimzadeh Khoshroo, L.; Ketteniss, N.; Mauder, C.; Behmenburg, H.; Woitok, J.F.; Booker, I.; Gruis, J.; Heuken, M.; Vescan, A.; Kalisch, H.; et al. Quaternary Nitride Heterostructure Field Effect Transistors. Phys. Status Solidi C 2010, 7, 2001–2003. [Google Scholar] [CrossRef]
- Ketteniss, N.; Khoshroo, L.R.; Eickelkamp, M.; Heuken, M.; Kalisch, H.; Jansen, R.H.; Vescan, A. Study on Quaternary AlInGaN/GaN HFETs Grown on Sapphire Substrates. Semicond. Sci. Technol. 2010, 25, 75013. [Google Scholar] [CrossRef]
- Schroder, D.K. Carrier and Doping Density. In Semiconductor Material and Device Characterization; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 61–125. [Google Scholar]
- Butté, R.; Carlin, J.-F.; Feltin, E.; Gonschorek, M.; Nicolay, S.; Christmann, G.; Simeonov, D.; Castiglia, A.; Dorsaz, J.; Buehlmann, H.J.; et al. Current Status of AlInN Layers Lattice-Matched to GaN for Photonics and Electronics. J. Phys. D Appl. Phys. 2007, 40, 6328–6344. [Google Scholar] [CrossRef]
- Liuolia, V.; Marcinkevičius, S.; Billingsley, D.; Shatalov, M.; Yang, J.; Gaska, R.; Shur, M.S. Photoexcited Carrier Dynamics in AlInN/GaN Heterostructures. Appl. Phys. Lett. 2012, 100, 242104. [Google Scholar] [CrossRef]
- Gonschorek, M.; Simeonov, D.; Carlin, J.-F.; Feltin, E.; Py, M.A.; Grandjean, N. Temperature Mapping of Al0.85In0.15N/AlN/GaN High Electron Mobility Transistors through Micro-Photoluminescence Studies. Eur. Phys. J. Appl. Phys. 2009, 47, 30301. [Google Scholar] [CrossRef]
- Marcinkevičius, S.; Liuolia, V.; Billingsley, D.; Shatalov, M.; Yang, J.; Gaska, R.; Shur, M.S. Transient Photoreflectance of AlInN/GaN Heterostructures. AIP Adv. 2012, 2, 042148. [Google Scholar] [CrossRef] [Green Version]
- Marcinkevičius, S.; Sztein, A.; Nakamura, S.; Speck, J.S. Properties of Sub-Band Edge States in AlInN Studied by Time-Resolved Photoluminescence of a AlInN/GaN Heterostructure. Semicond. Sci. Technol. 2015, 30, 115017. [Google Scholar] [CrossRef]
- Mouti, A.; Rouvière, J.-L.; Cantoni, M.; Carlin, J.-F.; Feltin, E.; Grandjean, N.; Stadelmann, P. Stress-Modulated Composition in the Vicinity of Dislocations in Nearly Lattice Matched AlxIn1−xN/GaN Heterostructures: A Possible Explanation of Defect Insensitivity. Phys. Rev. B 2011, 83, 195309. [Google Scholar] [CrossRef]
- Schulz, S.; Caro, M.A.; Tan, L.-T.; Parbrook, P.J.; Martin, R.W.; O’Reilly, E.P. Composition-Dependent Band Gap and Band-Edge Bowing in AlInN: A Combined Theoretical and Experimental Study. Appl. Phys. Express 2013, 6, 121001. [Google Scholar] [CrossRef] [Green Version]
- Wahab, Q.; Ellison, A.; Henry, A.; Janzén, E.; Hallin, C.; di Persio, J.; Martinez, R. Influence of Epitaxial Growth and Substrate-Induced Defects on the Breakdown of 4H–SiC Schottky Diodes. Appl. Phys. Lett. 2000, 76, 2725–2727. [Google Scholar] [CrossRef]
- Muzykov, P.G.; Bolotnikov, A.V.; Sudarshan, T.S. Study of Leakage Current and Breakdown Issues in 4H–SiC Unterminated Schottky Diodes. Solid State Electron. 2009, 53, 14–17. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Capano, M.A. The Correlation of Surface Defects and Reverse Breakdown of 4H-SiC Schottky Barrier Diodes. J. Electron. Mater. 2007, 36, 272–276. [Google Scholar] [CrossRef]
- Saito, W.; Kuraguchi, M.; Takada, Y.; Tsuda, K.; Omura, I.; Ogura, T. Influence of Surface Defect Charge at AlGaN–GaN-HEMT Upon Schottky Gate Leakage Current and Breakdown Voltage. IEEE Trans. Electron Devices 2005, 52, 159–164. [Google Scholar] [CrossRef]
- Gaska, R.; Shur, M.S.; Hu, X.; Yang, J.W.; Tarakji, A.; Simin, G.; Khan, A.; Deng, J.; Werner, T.; Rumyantsev, S.; et al. Highly Doped Thin-Channel GaN-Metal–Semiconductor Field-Effect Transistors. Appl. Phys. Lett. 2001, 78, 769–771. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorudas, J.; Prystawko, P.; Šimukovič, A.; Aleksiejūnas, R.; Mickevičius, J.; Kryśko, M.; Michałowski, P.P.; Kašalynas, I. Development of Quaternary InAlGaN Barrier Layer for High Electron Mobility Transistor Structures. Materials 2022, 15, 1118. https://doi.org/10.3390/ma15031118
Jorudas J, Prystawko P, Šimukovič A, Aleksiejūnas R, Mickevičius J, Kryśko M, Michałowski PP, Kašalynas I. Development of Quaternary InAlGaN Barrier Layer for High Electron Mobility Transistor Structures. Materials. 2022; 15(3):1118. https://doi.org/10.3390/ma15031118
Chicago/Turabian StyleJorudas, Justinas, Paweł Prystawko, Artūr Šimukovič, Ramūnas Aleksiejūnas, Jūras Mickevičius, Marcin Kryśko, Paweł Piotr Michałowski, and Irmantas Kašalynas. 2022. "Development of Quaternary InAlGaN Barrier Layer for High Electron Mobility Transistor Structures" Materials 15, no. 3: 1118. https://doi.org/10.3390/ma15031118
APA StyleJorudas, J., Prystawko, P., Šimukovič, A., Aleksiejūnas, R., Mickevičius, J., Kryśko, M., Michałowski, P. P., & Kašalynas, I. (2022). Development of Quaternary InAlGaN Barrier Layer for High Electron Mobility Transistor Structures. Materials, 15(3), 1118. https://doi.org/10.3390/ma15031118