Study of Molybdenite Floatability: Effect of Clays and Seawater
Abstract
:1. Introduction
2. Methodology
2.1. Materials
2.2. Microflotation
2.3. Contact Angle
3. Results and Discussion
3.1. Kaolin Effect on MoS2-Face Contact Angle and MoS2 Floatability
3.2. Na-Montmorillonite Effect on MoS2-Face Contact Angle and MoS2 Floatability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shields, J.A. Application of Molybdenum Metal and its Alloys; International Molybdenum Association: London, UK, 2013. [Google Scholar]
- Pham, V.P.; Yeom, G.Y. Recent advances in doping of molybdenum disulfide: Industrial applications and future prospects. Adv. Mater. 2016, 28, 9024–9059. [Google Scholar] [CrossRef] [PubMed]
- Solano Reynoso, W.M.; Villavicencio Chávez, M.A.; Vela Marroquín, A.R. Evaluación de un procedimiento para la reducción del uso de NaSH en la separación de la molibdenita utilizando gas de nitrógeno. Ing. Investig. Tecnol. 2019, 20, 1–7. (In Spanish) [Google Scholar] [CrossRef] [Green Version]
- López Valdivieso, A.; Reyes Bahena, J.L. Flotación de calcopirita, pirita y molibdenita en minerales de cobre tipo pórfidos. In Proceedings of the X Simposio Sobre Procesainento Minerales, Chillán, Chile, 14–18 November 2005; pp. 1–29. (In Spanish). [Google Scholar]
- Kelebek, S. Critical surface tension of wetting and of floatability of molybdenite and sulfur. J. Colloid Interface Sci. 1988, 124, 504–514. [Google Scholar] [CrossRef]
- Castro, S.; Lopez-Valdivieso, A.; Laskowski, J.S. Review of the flotation of molybdenite. Part I: Surface properties and floatability. Int. J. Miner. Process. 2016, 148, 48–58. [Google Scholar] [CrossRef]
- Lin, Q.; Gu, G.; Wang, H.; Liu, Y.; Fu, J.; Wang, C. Flotation mechanisms of molybdenite fines by neutral oils. Int. J. Miner. Metall. Mater. 2018, 25, 1–10. [Google Scholar] [CrossRef]
- He, T.; Li, H.; Jin, J.; Peng, Y.; Wang, Y.; Wan, H. Improving fine molybdenite flotation using a combination of aliphatic hydrocarbon oil and polycyclic aromatic hydrocarbon. Results Phys. 2019, 12, 1050–1055. [Google Scholar] [CrossRef]
- Nakhaei, F.; Irannajad, M. Investigation of effective parameters for molybdenite recovery from porphyry copper ores in industrial flotation circuit. Physicochem. Probl. Miner. Process. 2014, 50, 477–491. [Google Scholar] [CrossRef]
- López-Valdivieso, A.; Madrid-Ortega, I.; Reyes-BBahena, J.L.; Sánchez-López, A.A.; Song, S. Propiedades de la interface molibdenita/solución acuosa y su relación con la flotabilidad del mineral. In Proceedings of the XVI Congreso Internacional de Metalurgia Extractiva, Saltillo, México, 26–28 April 2006; pp. 226–235. (In Spanish). [Google Scholar]
- Moreno, P.A.; Aral, H.; Cuevas, J.; Monardes, A.; Adaro, M.; Norgate, T.; Bruckard, W. The use of seawater as process water at Las Luces copper-molybdenum beneficiation plant in Taltal (Chile). Miner. Eng. 2011, 24, 852–858. [Google Scholar] [CrossRef]
- Northey, S.A.; Mudd, G.M.; Werner, T.T.; Jowitt, S.M.; Haque, N.; Yellishetty, M.; Weng, Z. The exposure of global base metal resources to water criticality, scarcity and climate change. Glob. Environ. Chang. 2017, 44, 109–124. [Google Scholar] [CrossRef]
- Lucay, F.; Cisternas, L.A.; Gálvez, E.D.; López Valdivieso, A. Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation. Miner. Metall. Process. 2015, 32, 203–208. [Google Scholar] [CrossRef]
- Cisternas, L.A.; Gálvez, E.D. The use of seawater in mining. Miner. Process. Extr. Metall. Rev. 2018, 39, 18–33. [Google Scholar] [CrossRef]
- Mu, Y.; Peng, Y.; Lauten, R.A. The depression of pyrite in selective flotation by different reagent systems—A Literature review. Miner. Eng. 2016, 96–97, 143–156. [Google Scholar] [CrossRef]
- Zanin, M.; Lambert, H.; du Plessis, C.A. Lime use and functionality in sulphide mineral flotation: A review. Miner. Eng. 2019, 143, 105922. [Google Scholar] [CrossRef]
- Castellón, C.I.; Piceros, E.C.; Toro, N.; Robles, P.; López-Valdivieso, A.; Jeldres, R.I. Depression of pyrite in seawater flotation by guar gum. Metals 2020, 10, 239. [Google Scholar] [CrossRef] [Green Version]
- Jeldres, R.I.; Uribe, L.; Cisternas, L.A.; Gutierrez, L.; Leiva, W.H.; Valenzuela, J. The effect of clay minerals on the process of flotation of copper ores—A critical review. Appl. Clay Sci. 2019, 170, 57–69. [Google Scholar] [CrossRef]
- Grafe, M.; Klauber, C.; McFarlane, A.J. Clays in the Minerals Processing Value Chain; Grafe, M., Klauber, C., McFarlane, A.J., Robinson, D.J., Eds.; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781316661888. [Google Scholar]
- Lagaly, G.H. van Olphen: An Introduction to Clay Colloid Chemistry, 2nd ed.; John Wiley & Sons: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada, 1977. [Google Scholar]
- Peng, Y.; Zhao, S. The effect of surface oxidation of copper sulfide minerals on clay slime coating in flotation. Miner. Eng. 2011, 24, 1687–1693. [Google Scholar] [CrossRef]
- Taner, H.A.; Onen, V. Control of clay minerals effect in flotation. A review. E3S Web Conf. 2016, 8, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.F.; Zhang, Q.H.; Maa, J.P.Y. Coagulation processes of kaolinite and montmorillonite in calm, saline water. Estuar. Coast. Shelf Sci. 2018, 202, 18–29. [Google Scholar] [CrossRef]
- Wang, B.; Peng, Y. The interaction of clay minerals and saline water in coarse coal flotation. Fuel 2014, 134, 326–332. [Google Scholar] [CrossRef]
- Chen, X.; Peng, Y. Managing clay minerals in froth flotation—A critical review. Miner. Process. Extr. Metall. Rev. 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Yepsen, R.; Roa, J.; Toledo, P.G.; Gutiérrez, L. Chalcopyrite and molybdenite flotation in seawater: The use of inorganic dispersants to reduce the depressing effects of micas. Minerals 2021, 11, 539. [Google Scholar] [CrossRef]
- Ramirez, A.; Gutierrez, L.; Vega-Garcia, D.; Reyes-Bozo, L. The depressing effect of kaolinite on molybdenite flotation in seawater. Minerals 2020, 10, 578. [Google Scholar] [CrossRef]
- Meleshyn, A.; Bunnenberg, C. Swelling of Na∕Mg-montmorillonites and hydration of interlayer cations: A Monte Carlo study. J. Chem. Phys. 2005, 123, 74706. [Google Scholar] [CrossRef]
Synthetic Seawater (SSW) | |
---|---|
Salt | Mass (g) |
Na3PO4 · 12H2O | 0.0046 |
NaHCO3 | 0.2100 |
KCl | 0.7753 |
CaCl2 | 2.3639 |
MgCl2 · 6H2O | 2.6907 |
Na2SO4 | 4.1476 |
NaCl | 23.6098 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto, C.; Toro, N.; Gallegos, S.; Gálvez, E.; Robledo-Cabrera, A.; Jeldres, R.I.; Jeldres, M.; Robles, P.; López-Valdivieso, A. Study of Molybdenite Floatability: Effect of Clays and Seawater. Materials 2022, 15, 1136. https://doi.org/10.3390/ma15031136
Soto C, Toro N, Gallegos S, Gálvez E, Robledo-Cabrera A, Jeldres RI, Jeldres M, Robles P, López-Valdivieso A. Study of Molybdenite Floatability: Effect of Clays and Seawater. Materials. 2022; 15(3):1136. https://doi.org/10.3390/ma15031136
Chicago/Turabian StyleSoto, Catalina, Norman Toro, Sandra Gallegos, Edelmira Gálvez, Aurora Robledo-Cabrera, Ricardo I. Jeldres, Matías Jeldres, Pedro Robles, and Alejandro López-Valdivieso. 2022. "Study of Molybdenite Floatability: Effect of Clays and Seawater" Materials 15, no. 3: 1136. https://doi.org/10.3390/ma15031136
APA StyleSoto, C., Toro, N., Gallegos, S., Gálvez, E., Robledo-Cabrera, A., Jeldres, R. I., Jeldres, M., Robles, P., & López-Valdivieso, A. (2022). Study of Molybdenite Floatability: Effect of Clays and Seawater. Materials, 15(3), 1136. https://doi.org/10.3390/ma15031136