Influence of pH Cycling on Erosive Wear and Color Stability of High-Viscosity Glass Ionomer Cements
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- EQUIA Forte HT Fil (GC, Tokyo, Japan), without coating (n = 22);
- (2)
- Fuji IX (GC, Tokyo, Japan) (n = 22);
- (3)
- Ketac Universal Aplicap (ESPE, Neuss, Germany) (n = 22).
- (1)
- Control subgroup—samples kept in distilled water at 37 °C for 14 days (n = 6);
- (2)
- Samples exposed to Fuzetea (Green iced tea passion fruit no sugar; Coca-Cola Company, Atlanta, Georgia, USA; pH = 3.78; n = 8);
- (3)
- Samples exposed to Aceto balsamico di Modena (Ponti S.p.A., Vignola, Italy; pH = 3.0; n = 8).
3. Results
3.1. Changes in Mass after pH Cycling
3.2. Changes in Color after pH Cycling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lussi, A.; Schlueter, N.; Rakhmatullina, E.; Ganss, C. Dental Erosion—An Overview with Emphasis on Chemical and Histopathological Aspects. Caries Res. 2011, 45, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Wongkhantee, S.; Patanapiradej, V.; Maneenut, C.; Tantbirojn, D. Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J. Dent. 2006, 34, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Mat Yaman, Z.F.; Luddin, N.; Khursheed Alam, M. In vitro study of erosive effects of commercial soft drinks on surface microhardness of tooth-colored restorative materials. Int. Med. J. 2014, 21, 83–85. [Google Scholar]
- Hartz, J.J.; Procopio, A.; Attin, T.; Wegehaupt, F.J. Erosive Potential of Bottled Salad Dressings. Oral Oealth Prev. Dent. 2021, 19, 51–57. [Google Scholar] [CrossRef]
- Linkosalo, E.; Markkanen, H. Dental erosions in relation to lactovegetarian diet. Scand. J. Dent. Res. 1985, 93, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Shellis, R.P.; Featherstone, J.D.; Lussi, A. Understanding the chemistry of dental erosion. Monogr. Oral. Sci. 2014, 25, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wegehaupt, F.J.; Wiegand, A.; Roos, M.; Attin, T.; Buchalla, W. Erosion and abrasion of tooth-colored restorative materials and human enamel. J. Dent. 2009, 37, 913–922. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Cefaly, D.F.; Dos Santos, J.L.; Dos Santos, J.R.; Lauris, J.R.; Mondelli, R.F.; Atta, M.T. In vitro interactions between lactic acid solution and art glass-ionomer cements. J. Appl. Oral Sci. 2009, 17, 274–279. [Google Scholar] [CrossRef] [Green Version]
- Wan Bakar, W.; McIntyre, J. Susceptibility of selected tooth-coloured dental materials to damage by common erosive acids. Aust. Dent. J. 2008, 53, 226–234. [Google Scholar] [CrossRef]
- Reddy, D.S.; Kumar, R.A.; Venkatesan, S.M.; Narayan, G.S.; Duraivel, D.; Indra, R. Influence of citric acid on the surface texture of glass ionomer restorative materials. J. Conserv. Dent. 2014, 17, 436–439. [Google Scholar] [CrossRef] [Green Version]
- Gurgan, S.; Kutuk, Z.B.; Yalcin Cakir, F.; Ergin, E. A randomized controlled 10 years follow up of a glass ionomer restorative material in class I and class II cavities. J. Dent. 2020, 94, 103175. [Google Scholar] [CrossRef] [PubMed]
- Brkanović, S.; Ivanišević, A.; Miletić, I.; Mezdić, D.; Jukić Krmek, S. Effect of Nano-Filled Protective Coating and Different pH Enviroment on Wear Resistance of New Glass Hybrid Restorative Material. Materials 2021, 14, 755. [Google Scholar] [CrossRef] [PubMed]
- Bueno, L.S.; Silva, R.M.; Magalhães, A.P.R.; Navarro, M.F.L.; Pascotto, R.C.; Buzalaf, M.A.R.; Nicholson, J.W.; Sidhu, S.K.; Borges, A.F.S. Positive correlation between fluoride release and acid erosion of restorative glass-ionomer cements. Dent. Mater. 2019, 35, 135–143. [Google Scholar] [CrossRef]
- Viana, Í.; Alania, Y.; Feitosa, S.; Borges, A.B.; Braga, R.R.; Scaramucci, T. Bioactive Materials Subjected to Erosion/Abrasion and Their Influence on Dental Tissues. Oper. Dent. 2020, 45, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Zalizniak, I.; Palamara, J.E.; Wong, R.H.; Cochrane, N.J.; Burrow, M.F.; Reynolds, E.C. Ion release and physical properties of CPP-ACP modified GIC in acid solutions. J. Dent. 2013, 41, 449–454. [Google Scholar] [CrossRef]
- Perera, D.; Yu, S.; Zeng, H.; Meyers, I.A.; Walsh, L.J. Acid Resistance of Glass Ionomer Cement Restorative Materials. Bioengineering 2020, 7, 150. [Google Scholar] [CrossRef]
- Inokoshi, S.; Burrow, M.F.; Kataumi, M.; Yamada, T.; Takatsu, T. Opacity and color changes of tooth-colored restorative materials. Oper. Dent. 1996, 21, 73–80. [Google Scholar]
- Sidhu, S.K.; Ikeda, T.; Omata, Y.; Fujita, M.; Sano, H. Change of color and translucency by light curing in resin composites. Oper. Dent. 2006, 31, 598–603. [Google Scholar] [CrossRef]
- Hotwani, K.; Thosar, N.; Baliga, S. Comparative in vitro assessment of color stability of hybrid esthetic restorative materials against various children’s beverages. J. Conserv. Dent. 2014, 17, 70–74. [Google Scholar] [CrossRef]
- Ruyter, I.E.; Nilner, K.; Moller, B. Color stability of dental composite resin materials for crown and bridge veneers. Dent. Mater. 1987, 3, 24–51. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Meth. 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Francisconi, L.F.; Honório, H.M.; Rios, D.; Magalhães, A.C.; Machado, M.A.A.M.; Buzalaf, M.A.R. Effect of erosive pH cycling on different restorative materials and on enamel restored with these materials. Oper. Dent. 2008, 33, 203–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomoto, R.; McCabe, J.F. A simple acid erosion test for dental water-based cements. Dent. Mater. 2001, 17, 53–59. [Google Scholar] [CrossRef]
- Salas, C.F.; Guglielmi, C.A.; Raggio, D.P.; Mendes, F.M. Mineral loss on adjacent enamel glass ionomer cements restorations after cariogenic and erosive challenges. Arch. Oral Biol. 2011, 56, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.E.S.; Melo, T.M.T.C.; de Sá Brandim, A.; de Oliveira, I.R. Chemical and morphological evaluation of enamel and dentin near cavities restored with conventional and zirconia modified glass ionomer subjected to erosion-abrasion. Microsc. Res. Technol. 2019, 82, 1114–1126. [Google Scholar] [CrossRef]
- Xavier, A.M.; Sunny, S.M.; Rai, K.; Hedge, A.M. Repeated exposure of acidic beverages on esthetic restorative materials: An in-vitro surface microhardness study. J. Clin. Exp. Dent. 2016, 8, 312–317. [Google Scholar] [CrossRef]
- Wilson, A.D.; Groffman, D.M.; Kuhn, A.T. The release of fluoride and other chemical species from a glass-ionomer cement. Biomaterials 1985, 6, 431–433. [Google Scholar] [CrossRef]
- Cattani-Lorente, M.A.; Dupuis, V.; Payan, J.; Moya, F.; Meyer, J.M. Effect of water on the physical properties of resin-modified glass ionomer cements. Dent. Mater. 1999, 15, 71–78. [Google Scholar] [CrossRef]
- Ozkanoglu, S.; Akin, E.G.G. Evaluation of the Effect of Various Beverages on the Color Stability and Microhardness of Restorative Materials. Niger. J. Clin. Pract. 2020, 23, 322–328. [Google Scholar]
- Lim, B.S.; Moon, H.J.; Baek, K.W.; Hahn, S.H.; Kim, C.W. Color stability of glass-ionomers and polyacid-modified resin-based composites in various environmental solutions. Am. J. Dent. 2001, 14, 241–246. [Google Scholar]
Material | Type of Material | Manufacturer | Composition—Powder | Composition—Liquid |
---|---|---|---|---|
Fuji IX GP FAST | Conventional high-viscosity glass ionomer | GC, Tokyo, Japan | 90–100% fluoroaluminosilicate glass, 5–10% polyacrylic acid | 30–40% polyacrylic acid, polycarboxylic acid, 40% distilled water |
Ketac Universal Aplicap | Conventional high-viscosity glass ionomer | 3M ESPE, Neuss, Germany | oxide glass | copolymer of acrylic acid—maleic acid, tartaric acid, water |
EQUIA Forte HT Fil | Glass-hybrid restorative material | GC, Tokyo, Japan | 95% strontium fluoroaluminosilicate glass, 5% polyacrylic acid | 40% aqueous polyacrylic acid |
Mean ± Std dev | Before (mg) | After (mg) | Difference (µg) | |
---|---|---|---|---|
Fuji IX | Fuzetea (N = 8) | 0.1654 ± 0.0145 | 0.1649 ± 0.0149 | −0.5958+/−0.7533 ** |
Aceto balsamico (N = 8) | 0.1596 ± 0.0112 | 0.1588 ± 0.0114 | −0.7667+/−0.5164 ** | |
Control (N = 6) | 0.1521 ± 0.0097 | 0.1521 ± 0.0096 | −0.0389+/−0.1104 | |
Ketac | Fuzetea (N = 8) | 0.1574 ± 0.0080 | 0.1573 ± 0.0078 | −0.1167+/−0.3314 |
Aceto balsamico (N = 8) | 0.1555 ± 0.0121 | 0.1524 ± 0.0140 | −3.0792+/−7.8892 | |
Control (N = 6) | 0.1545 ± 0.0059 | 0.1542 ± 0.0059 | −0.2111+/−0.1708 * | |
Equia | Fuzetea (N = 8) | 0.1472 ± 0.0112 | 0.1467 ± 0.0111 | −0.4833+/−1.0673 |
Aceto balsamico (N = 8) | 0.1549 ± 0.0067 | 0.1506 ± 0.0056 | −4.2875+/−4.3092 * | |
Control (N = 6) | 0.156 ± 0.00980 | 0.1558 ± 0.0098 | −0.1889+/−0.1656 * | |
Total | All samples (N = 66) | 0.156 ± 0.01090 | 0.1548 ± 0.0112 | −1.1707+/−3.3352 ** |
Total | Fuzetea 2 (N = 24) | 0.1567 ± 0.0134 | 0.1563 ± 0.0135 | −0.3986+/−0.7723 2 * |
Aceto balsamico 1 (N = 24) | 0.1566 ± 0.0101 | 0.1539 ± 0.0110 | −2.7111+/−5.1867 1 * | |
Control 2 (N = 18) | 0.1542 ± 0.0083 | 0.1541 ± 0.0082 | −0.1463+/−0.1626 2 ** | |
Total | Fuji IX 1 (N = 22) | 0.1597 ± 0.0128 | 0.1592 ± 0.0129 | −0.5061+/−0.6101 1 ** |
Ketac 1 (N = 22) | 0.1559 ± 0.0090 | 0.1547 ± 0.0099 | −1.2197+/−4.7813 1 | |
Equia 1 (N = 22) | 0.1524 ± 0.0098 | 0.1506 ± 0.0094 | −1.7864+/−3.2148 1 * |
Mean ± Std dev | Before | After | ΔL | |
---|---|---|---|---|
Fuji IX | Fuzetea (N = 8) | 70.63+/−3.22 | 60.14+/−3.72 | −10.49+/−6.12 ** |
Aceto balsamico (N = 8) | 73.05+/−0.91 | 60.10+/−2.55 | −12.95+/−2.73 ** | |
Control (N = 6) | 72.72+/−2.02 | 64.20+/−1.86 | −8.52+/−2.45 ** | |
Ketac | Fuzetea (N = 8) | 74.04+/−0.42 | 66.19+/−0.99 | −7.85+/−1.19 ** |
Aceto balsamico (N = 8) | 74.99+/−0.63 | 63.44+/−2.00 | −11.55+/−2.22 ** | |
Control (N = 6) | 74.15+/−1.19 | 66.82+/−0.83 | −7.33+/−1.27 ** | |
Equia | Fuzetea (N = 8) | 78.11+/−1.55 | 63.93+/−3.36 | −14.19+/−4.16 ** |
Aceto balsamico (N = 8) | 77.29+/−1.66 | 58.65+/−4.17 | −18.64+/−5.26 ** | |
Control (N = 6) | 76.65+/−3.10 | 64.77+/−2.60 | −11.88+/−3.74 ** | |
Total | All samples (N = 66) | 74.63+/−2.90 | 62.94+/−3.76 | −11.69+/−4.86 ** |
Total | Fuzetea 2 (N = 24) | 74.26+/−3.7 | 63.42+/−3.8 | −10.84+/−4.91 2 |
Aceto balsamico 1 (N = 24) | 75.11+/−2.08 | 60.73+/−3.56 | −14.38+/−4.69 1 | |
Control 2 (N = 18) | 74.51+/−2.69 | 65.26+/−2.13 | −9.24+/−3.21 2 | |
Total | Fuji IX 2 (N = 22) | 72.08+/−2.45 | 61.23+/−3.32 | −10.85+/−4.44 ** 2 |
Ketac 2 (N = 22) | 74.41+/−0.85 | 65.36+/−2.02 | −9.05+/−2.50 ** 2 | |
Equia 1 (N = 22) | 77.41+/−2.09 | 62.24+/−4.36 | −15.18+/−5.14 ** 1 |
Mean ± Std dev | Before | After | Δa | |
---|---|---|---|---|
Fuji IX | Fuzetea (N = 8) | 6.28+/−0.49 | 9.63+/−0.61 | 3.35+/−0.73 ** |
Aceto balsamico (N = 8) | 6.23+/−0.20 | 10.00+/−0.65 | 3.78+/−0.64 ** | |
Control (N = 6) | 6.47+/−0.69 | 8.32+/−0.26 | 1.85+/−0.67 ** | |
Ketac | Fuzetea (N = 8) | 8.20+/−0.25 | 11.14+/−0.76 | 2.94+/−0.88 ** |
Aceto balsamico (N = 8) | 7.80+/−0.53 | 11.55+/−0.81 | 3.75+/−0.55 ** | |
Control (N = 6) | 8.10+/−0.54 | 10.58+/−0.43 | 2.48+/−0.41 ** | |
Equia | Fuzetea (N = 8) | 6.60+/−0.32 | 8.94+/−0.6 | 2.34+/−0.57 ** |
Aceto balsamico (N = 8) | 6.76+/−0.35 | 10.15+/−0.64 | 3.39+/−0.65 ** | |
Control (N = 6) | 6.63+/−0.49 | 8.75+/−0.59 | 2.12+/−0.50 ** | |
Total | All samples (N = 66) | 7.00+/−0.86 | 9.96+/−1.18 | 2.95+/−0.90 ** |
Total | Fuzetea 2 (N = 24) | 7.03+/−0.93 | 9.90+/−1.13 | 2.88+/−0.82 2 ** |
Aceto balsamico 1 (N = 24) | 6.93+/−0.76 | 10.57+/−0.98 | 3.64+/−0.61 1 ** | |
Control 3 (N = 18) | 7.07+/−0.93 | 9.22+/−1.09 | 2.15+/−0.57 3 ** | |
Total | Fuji IX 2 (N = 22) | 6.31+/−0.46 | 9.40+/−0.88 | 3.10+/−1.03 2 ** |
Ketac 1 (N = 22) | 8.03+/−0.47 | 11.14+/−0.78 | 3.11+/−0.82 1 ** | |
Equia 2 (N = 22) | 6.67+/−0.37 | 9.33+/−0.87 | 2.66+/−0.79 2 ** |
Mean ± Std dev | Before | After | Δb | |
---|---|---|---|---|
Fuji IX | Fuzetea (N = 8) | 35.26+/−1.5 | 40.95+/−1.57 | 5.69+/−2.28 ** |
Aceto balsamico (N = 8) | 35.89+/−0.61 | 40.90+/−0.93 | 5.01+/−1.06 ** | |
Control (N = 6) | 36.53+/−1.27 | 39.33+/−0.67 | 2.80+/−1.51 ** | |
Ketac | Fuzetea (N = 8) | 46.34+/−0.61 | 49.34+/−1.45 | 3.00+/−1.72 ** |
Aceto balsamico (N = 8) | 45.65+/−0.99 | 48.48+/−1.24 | 2.83+/−1.38 ** | |
Control (N = 6) | 46.15+/−0.94 | 48.88+/−0.83 | 2.73+/−0.68 ** | |
Equia | Fuzetea (N = 8) | 30.10+/−0.72 | 36.43+/−1.51 | 6.33+/−1.37 ** |
Aceto balsamico (N = 8) | 30.40+/−0.79 | 35.65+/−0.80 | 5.25+/−0.73 ** | |
Control (N = 6) | 29.88+/−1.06 | 33.87+/−0.80 | 3.98+/−1.46 ** | |
Total | All samples (N = 66) | 37.34+/−6.69 | 41.61+/−5.75 | 4.27+/−1.92 ** |
Total | Fuzetea 1 (N = 24) | 35.84+/−1.23 | 40.49+/−1.32 | 4.65+/−2.02 ** 1 |
Aceto balsamico 2 (N = 24) | 46.04+/−0.87 | 48.9+/−1.23 | 2.86+/−1.32 ** 2 | |
Control 2 (N = 18) | 30.15+/−0.83 | 35.45+/−1.49 | 5.30+/−1.48 ** 2 | |
Total | Fuji IX 3 (N = 22) | 37.23+/−6.99 | 42.24+/−5.65 | 5.00+/−2.28 ** 3 |
Ketac 2 (N = 22) | 37.31+/−6.49 | 41.68+/−5.46 | 4.36+/−1.52 ** 2 | |
Equia 1 (N = 22) | 37.52+/−6.95 | 40.69+/−6.43 | 3.17+/−1.33 ** 1 |
Fuji IX | Ketac | Equia | |||||||
---|---|---|---|---|---|---|---|---|---|
Aceto | Fuzetea | Control | Aceto | Fuzetea | Control | Aceto | Fuzetea | Aceto | |
ΔL | −12.95 | −10.48 | −8.52 | −7.85 | −10.85 | −7.33 | −9.05 | −7.33 | −14.19 |
Δa | 3.78 | 3.35 | 1.85 | 2.93 | 3.095 | 3.75 | 3.12 | 2.48 | 2.33 |
Δb | 5.01 | 5.69 | 2.8 | 3 | 4.65 | 2.83 | 2.86 | 2.73 | 6.33 |
ΔE | 14.39 | 11.16 | 9.16 | 8.89 | 12.2 | 8.71 | 9.99 | 8.21 | 15.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čulina, M.Z.; Rajić, V.B.; Šalinović, I.; Klarić, E.; Marković, L.; Ivanišević, A. Influence of pH Cycling on Erosive Wear and Color Stability of High-Viscosity Glass Ionomer Cements. Materials 2022, 15, 923. https://doi.org/10.3390/ma15030923
Čulina MZ, Rajić VB, Šalinović I, Klarić E, Marković L, Ivanišević A. Influence of pH Cycling on Erosive Wear and Color Stability of High-Viscosity Glass Ionomer Cements. Materials. 2022; 15(3):923. https://doi.org/10.3390/ma15030923
Chicago/Turabian StyleČulina, Maja Zečević, Valentina Brzović Rajić, Ivan Šalinović, Eva Klarić, Luka Marković, and Ana Ivanišević. 2022. "Influence of pH Cycling on Erosive Wear and Color Stability of High-Viscosity Glass Ionomer Cements" Materials 15, no. 3: 923. https://doi.org/10.3390/ma15030923
APA StyleČulina, M. Z., Rajić, V. B., Šalinović, I., Klarić, E., Marković, L., & Ivanišević, A. (2022). Influence of pH Cycling on Erosive Wear and Color Stability of High-Viscosity Glass Ionomer Cements. Materials, 15(3), 923. https://doi.org/10.3390/ma15030923