The Effect of Alcohol Compound on the Solidification of Magnesium Oxysulfate Cement-Boron Mud Blends
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Specimen Preparation
2.3. Testing Methods
3. Results
3.1. Effect of Modifiers on the Setting Time for Magnesium Oxysulfate Cement-Boron Mud Blends
3.2. Influence of Modifier on the Mechanical Properties of Magnesium Oxysulfate Cement-Boron Mud Blends
3.3. The Influence of Different Modifiers on the Hydration Products of Magnesium Oxysulfate Cement-Boron Mud Blends
3.4. The Effect of Alcohol Groups on the Microscopic Morphology of Magnesium Oxysulfate Cement-Boron Mud Blends
4. Study of Different Modifiers on the Solidification Performance of Boron and the Effect of Different pH Values on the Solidification Effect
5. Effects of Different Modifiers on Boron-Ion Leaching
6. Conclusions
- After adding boron mud, the compressive strength of magnesium oxysulfate cement decreases. However, the compressive strength is significantly improved after compounding with D-mannitol, acrylic acid and glycerol. This shows that these modifiers can be used to improve the mechanical properties of magnesium oxysulfate cement-boron mud blends.
- Adding KH550, acrylic acid, glycerol and D-Mannitol can increase the bond energy of boron and improve the solidification ability towards boron, but after adding D-Mannitol, a large molecular weight structure is formed that increases the porosity; thus, its solidification effect on boron is poor. Although KH550 has the best solidification effect on boron, its strength is low. Consequently, when combining mechanical properties and solidification effects, the use of the compound formula has a better effect.
- With increasing pH, the solidification effect of magnesium oxysulfate cement on boron is reduced. Therefore, magnesium oxysulfate cement, as a low-alkali cement, is more conducive to the solidification of boron in boron mud than ordinary Portland cement.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- US Geological Survey & Orienteering. Mineral Commodity Summaries; Government Printing Office: Washington, DC, USA, 2019. [Google Scholar]
- Liu, R.; Xue, X.X.; Liu, X.; Wang, D.S.; Zha, F.; Huang, D.W. Progress on China’s boron resource and the current situation of boron-bearing materials. Bull. Chin. Ceram. Soc. 2006, 25, 102–107. [Google Scholar]
- An, J.; Xue, X. Life cycle environmental impact assessment of borax and boric acid production in China. J. Clean. Prod. 2014, 66, 121–127. [Google Scholar] [CrossRef]
- El-Said, G.F.; El-Sadaawy, M.M. Seasonal Variation of Boron and Fluoride in Tilapia nilotica from an Egyptian Fish Farm in Relation to Human Health Hazard Assessment. Hum. Ecol. Risk Assess. Int. J. 2013, 19, 930–943. [Google Scholar] [CrossRef]
- Magara, Y.; Tabata, A.; Kohki, M.; Kawasaki, M.; Hirose, M. Development of boron reduction system for sea water desalination. Desalination 1998, 118, 25–33. [Google Scholar] [CrossRef]
- Heumann, K.G.; Eisenhut, S. Identifification of ground water contaminations by landfifills using precise boron isotope ratiomeasurements with negative thermal ionization mass spectrometry. Fresenius J. Anal. Chem. 1997, 359, 375–377. [Google Scholar]
- Cengeloglu, Y.; Tor, A.; Arslan, G.; Ersoz, M.; Gezgin, S. Removal of boron from aqueous solution by using neutralized red mud. J. Hazard. Mater. 2007, 142, 412–417. [Google Scholar] [CrossRef]
- Hanay, A.; Boncukcuoglu, R.; Kocakerim, M.M.; Yilmaz, A.E. Boron removal from geothermal waters by ion exchange in a batch reactor. Fresenius Environ. Bull. 2003, 12, 1190–1194. [Google Scholar]
- Vuppaladadiyam, A.K.; Merayo, N.; Prinsen, P.; Luque, R.; Blanco, A.; Zhao, M. A review on greywater reuse: Quality, risks, barriers and global scenarios. Rev. Environ. Sci. Bio/Technol. 2019, 18, 77–99. [Google Scholar] [CrossRef]
- Shen, S.L.; Han, J.; Du, Y.J. Deep mixing induced property changes in surrounding sensitive marine clays. J. Geotech. Geoenviron. 2008, 134, 845–854. [Google Scholar] [CrossRef]
- Falciglia, P.P.; Romano, S.; Vagliasindi, F.G. Stabilization/aolidification of soils contaminated by mining activities: Influence of barite powder and grout content on γ-radiation shielding, unconfined compressive strength and 232Th immobilization. J. Geochem. Explor. 2017, 174, 140–147. [Google Scholar] [CrossRef]
- Lin, C.T.; Lee, H.T.; Chen, J.K. Preparation and properties of bisphenol-F based boron-phenolic resin/modified silicon nitride composites and their usage as binders for grinding wheels. Appl. Surf. Sci. 2015, 330, 1–9. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P. Immobilization of heavy metal in cement-based solidification/stabilization: A review. Waste Manag. 2009, 29, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, L.; Cho, D.W.; Tsang, D.C.; Yang, J.; Hou, D.; Poon, C.S. Novel synergy of Si-rich minerals and reactive MgO for stabilization/solidification of contaminated sediment. J. Hazard. Mater. 2019, 365, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Szulejko, J.E.; Kumar, P.; Deep, A.; Kim, K.H. Global warming projections to 2100 using simple CO2 greenhouse gas modelling and comments on CO2 climate sensitivity factor. Atmos. Pollut. Res. 2017, 8, 136–140. [Google Scholar] [CrossRef]
- Kabir, H.; Hooton, R.D.; Popoff, N.J. Evaluation of cement soundness using the ASTM C151 autoclave expansion test. Cem. Concr. Res. 2020, 136, 106159. [Google Scholar] [CrossRef]
- Walling, S.A.; Provis, J.L. Magnesia-Based Cements: A Journey of 150 Years, and cements for the future? Chem. Rev. 2016, 116, 4170–4204. [Google Scholar] [CrossRef]
- Lu, B.; Shi, C.; Hou, G. Strength and microstructure of CO2 cured low-calcium clinker. Construct. Build. Mater. 2018, 188, 417–423. [Google Scholar] [CrossRef]
- Zhen, Z.; Zhan, B.G. Research on modification effects of citric acid on magnesium oxysulfate cement. J. Hefei Univ. Technol. 2013, 36, 461–464. (In Chinese) [Google Scholar]
- Mo, L.; Deng, M.; Tang, M.; Al-Tabbaa, A. MgO expansive cement and concrete in China: Past, present and future. Cem. Concr. Res. 2014, 57, 1–12. [Google Scholar] [CrossRef]
- Zhang, T.; Cheeseman, C.R.; Vandeperre, L.J. Development of low ph cement systems forming magnesium silicate hydrate (M-S-H). Cem. Concr. Res. 2011, 41, 439–442. [Google Scholar] [CrossRef]
- Jeoh-Zicari, T.; Scher, H.B.; Santa-Maria, M.C.; Strobel, S. Spray Dry Method for Encapsulation of Biological Moieties and Chemicals in Polymers Cross-Linked by Multivalent Ions for Controlled Release Applications. U.S. Patent 20140348815A1, 11 July 2014. [Google Scholar]
- Cotton, F.A.; Wilkinson, G.W. Advanced Inorganic Chemistry: A Comprehensive Text; John Wiley: Hoboken, NJ, USA, 1972. [Google Scholar]
- Hussain, A.; Sharma, R.; Minier-Matar, J.; Hirani, Z.; Adham, S. Application of emerging ion exchange resin for boron removal from saline groundwater. J. Water Process Eng. 2019, 32, 100906. [Google Scholar] [CrossRef]
- Barbieri, V.; Gualtieri, M.L.; Manfredini, T.; Siligardi, C. Hydration kinetics and microstructural development of a magnesium oxysulfate cement modified by macromolecules. Constr. Build. Mater. 2020, 248, 118624. [Google Scholar] [CrossRef]
- Gualtieri, A.F. Accuracy of XRPD QPA using the combined Rietveld-RIR method. J. Appl. Crystallogr. 2000, 33, 267–278. [Google Scholar] [CrossRef]
- Zhao, R.; Rupper, P.; Gaan, S. Recent development in phosphonic acid-based organic coatings on aluminium. Coatings 2017, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.K. Hydration/dehydration characteristics of struvite and dittmarite pertaining of magnesium ammonium phosphate cement systems. J. Mater. Sci. 1991, 26, 2514–2518. [Google Scholar] [CrossRef]
- Wagh, A.S.; Jeong, S.Y. Chemically bonded phosphate ceramic: I—A dissolution model of formation. J. Am. Ceram. Soc. 2003, 86, 1838–1844. [Google Scholar] [CrossRef]
- Wu, C.; Chen, W.; Zhang, H.; Yu, H.; Zhang, W.; Jiang, N.; Liu, L. The hydration mechanism and performance of Modified magnesium oxysulfate cement by tartaric acid. Constr. Build. Mater. 2017, 144, 516–524. [Google Scholar] [CrossRef]
- Wang, N.; Yu, H.; Bi, W.; Tan, Y.; Zhang, N.; Wu, C.; Ma, H.; Hua, S. Effects of sodium citrate and citric acid on the properties of magnesium oxysulfate cement. Constr. Build. Mater. 2018, 169, 697–704. [Google Scholar] [CrossRef]
- Qin, L.; Gao, X.J.; Chen, T.F. Recycling of raw rice husk to manufacture magnesium oxysulfate cement based lightweight building materials. J. Clean Prod. 2018, 191, 220–232. [Google Scholar] [CrossRef]
- Li, Z.; Ji, Z.; Jiang, L.; Yu, S. Effect of additives on the properties of magnesium oxysulfate cement. J. Intell. Fuzzy. Syst. 2017, 33, 3021–3025. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zang, C.G.; Shi, L.P.; Jiao, Q.J.; Pan, H.W.; She-li, Y.F. Preparation of boron-containg hybridized silicon rubber by in situ polymerization of vinylphenyl-functionalized polyborosiloxane and liquid silicone rubber. Polymer 2021, 219, 123541. [Google Scholar] [CrossRef]
- Ma, X.L.; Ning, G.Q.; Qi, C.L.; Gao, J.S. One-step synthesis of basic magnesium sulfate whiskers by atmospheric pressure reflux. Particuology 2016, 24, 191–196. [Google Scholar] [CrossRef]
- Beaudion, J.; Ramachandran, V.S. Strength development in magnesium oxysulfate cement. Cem. Concr. Res. 1977, 8, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Zhao, Y.; Yu, S.; Du, J.; Hu, X.; Bai, G.; Wang, Z. Environment-friendly dual-network hydrogel dust suppressant based on xanthan gum, polyvinyl alcohol and acrylic acid. J. Environ. Manag. 2021, 295, 113–139. [Google Scholar] [CrossRef]
- Leroy, G.; Sana, M.; Wilante, C.; van Zieleghem, M.-J. Revaluation of the bond energy term+s for bonds between atoms of the first rows of the periodic table, including lithium, beryllium and boron. J. Mol. Struct. 1991, 247, 199–215. [Google Scholar] [CrossRef]
Component | Content (wt%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | CaO | MgO | Fe2O3 | Al2O3 | B2O3 | K2O | Na2O | LOI | |
Borax Boron Mud | 33.79 | 6.95 | 23.43 | 6.00 | 7.52 | 2.10 | 1.40 | 1.13 | 17.68 |
Light-burned Magnesia (LBM) | 6.51 | 1.30 | 85.08 | 0.27 | 0.80 | 6.04 |
Experiment | Magnesium Oxide | Boron Mud | Citric Acid | KH550 | D-Mannitol | Glycerol | Acrylic Acid |
---|---|---|---|---|---|---|---|
MOS-N | 1000 g | 1000 g | 3 g | ||||
MOS-K | 1000 g | 1000 g | 3 g | 80 g | |||
MOS-D | 1000 g | 1000 g | 3 g | 80 g | |||
MOS-DA | 1000 g | 1000 g | 3 g | 80 g | 40 g | ||
MOS-KG | 1000 g | 1000 g | 3 g | 80 g | 80 g | ||
MOS-GA | 1000 g | 1000 g | 3 g | 80 g | 40 g | ||
MOS-KDA | 1000 g | 1000 g | 3 g | 80 g | 80 g | 40 g |
The Serial Number | Borax | Acrylic Acid | D-Mannitol | Glycerol | KH550 | Water |
---|---|---|---|---|---|---|
B-N | 33.9 | 50 | ||||
B-K | 33.9 | 80 | 50 | |||
B-D | 33.9 | 80 | 50 | |||
B-DA | 33.9 | 40 | 80 | 50 | ||
B-GA | 33.9 | 40 | 80 | 50 | ||
B-KG | 33.9 | 80 | 80 | 50 | ||
B-KDA | 33.9 | 40 | 80 | 80 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Guan, Y.; Bi, W. The Effect of Alcohol Compound on the Solidification of Magnesium Oxysulfate Cement-Boron Mud Blends. Materials 2022, 15, 1446. https://doi.org/10.3390/ma15041446
Liang Y, Guan Y, Bi W. The Effect of Alcohol Compound on the Solidification of Magnesium Oxysulfate Cement-Boron Mud Blends. Materials. 2022; 15(4):1446. https://doi.org/10.3390/ma15041446
Chicago/Turabian StyleLiang, Yuanyuan, Yan Guan, and Wanli Bi. 2022. "The Effect of Alcohol Compound on the Solidification of Magnesium Oxysulfate Cement-Boron Mud Blends" Materials 15, no. 4: 1446. https://doi.org/10.3390/ma15041446
APA StyleLiang, Y., Guan, Y., & Bi, W. (2022). The Effect of Alcohol Compound on the Solidification of Magnesium Oxysulfate Cement-Boron Mud Blends. Materials, 15(4), 1446. https://doi.org/10.3390/ma15041446