Clean Electrochemical Synthesis of Pd–Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Materials
2.2. Electrochemical Fabrication of Pd Particles and Pd–Pt Bimetallic Catalysts
2.3. Characterization of Pd Particles and Pd–Pt Bimetallic Catalysts
2.4. Electrochemical Test
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, X.-P.; Yang, C.; Song, P.; Peng, J. Self-assembly of Au/MoS2 quantum dots core-satellite hybrid as efficient electrocatalyst for hydrogen production. Tungsten 2020, 2, 194–202. [Google Scholar] [CrossRef]
- Zhao, T.; Luo, E.; Li, Y.; Wang, X.; Liu, C.; Xing, W.; Ge, J. Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Sci. China Mater. 2021, 64, 1671–1678. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Ni, Z.; Deng, Y.; Zhong, C.; Hu, W. Improved catalytic performance of Pt/TiO2 nanotubes electrode for ammonia oxidation under UV-light illumination. Electrochim. Acta 2014, 150, 146–150. [Google Scholar] [CrossRef]
- Huang, L.; Zaman, S.; Wang, Z.; Niu, H.; You, B.; Xia, B.Y. Synthesis and Application of Platinum-based Hollow Nanoframes for Direct Alcohol Fuel Cells. Acta Phys.-Chim. Sin. 2021, 37, 2009035. [Google Scholar] [CrossRef]
- Omidvar, A.; Jaleh, B.; Nasrollahzadeh, M. Preparation of the GO/Pd nanocomposite and its application for the degradation of organic dyes in water. J. Colloid Interface Sci. 2017, 496, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Wang, H.; Zhai, C.; Zhu, M.; Yue, R.; Du, Y.; Yang, P.; Xu, J.; Lu, W. Clean Method for the Synthesis of Reduced Graphene Oxide-Supported PtPd Alloys with High Electrocatalytic Activity for Ethanol Oxidation in Alkaline Medium. ACS Appl. Mater. Interfaces 2014, 6, 3607–3614. [Google Scholar] [CrossRef]
- Muthukumar, V.; Chetty, R. Electrodeposited Pt–Pd dendrite on carbon support as anode for direct formic acid fuel cells. Ionics 2018, 24, 3937–3947. [Google Scholar] [CrossRef]
- Zhao, Q.; Ge, C.; Cai, Y.; Qiao, Q.; Jia, X. Silsesquioxane stabilized platinum-palladium alloy nanoparticles with morphology evolution and enhanced electrocatalytic oxidation of formic acid. J. Colloid Interface Sci. 2018, 514, 425–432. [Google Scholar] [CrossRef]
- Liu, H.; Adzic, R.R.; Wong, S.S. Multifunctional Ultrathin PdxCu1−x and Pt∼PdxCu1−x One-Dimensional Nanowire Motifs for Various Small Molecule Oxidation Reactions. ACS Appl. Mater. Interfaces 2015, 7, 26145–26157. [Google Scholar] [CrossRef]
- Ding, J.; Liu, Z.; Liu, X.; Liu, J.; Deng, Y.; Han, X.; Zhong, C.; Hu, W. Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation. Adv. Energy Mater. 2019, 9, 1900955. [Google Scholar] [CrossRef]
- Mazumder, V.; Sun, S. Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. J. Am. Chem. Soc. 2009, 131, 4588–4589. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Liu, Z.; Liu, X.; Liu, B.; Liu, J.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angew. Chem. 2020, 132, 5130–5139. [Google Scholar] [CrossRef]
- Zhang, S.; Shao, Y.; Yin, G.; Lin, Y. Electrostatic Self-Assembly of a Pt-around-Au Nanocomposite with High Activity towards Formic Acid Oxidation. Angew. Chem. Int. Ed. 2010, 49, 2211–2214. [Google Scholar] [CrossRef] [PubMed]
- Capon, A.; Parsons, R. The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1973, 45, 205–231. [Google Scholar] [CrossRef]
- Guo, S.; Dong, S.; Wang, E. Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. ACS Nano 2010, 4, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Morales-Acosta, D.; Ledesma-Garcia, J.; Godinez, L.A.; Rodríguez, H.; Álvarez-Contreras, L.; Arriaga, L. Development of Pd and Pd–Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation. J. Power Sources 2010, 195, 461–465. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, W. Nanoneedle-Covered Pd−Ag Nanotubes: High Electrocatalytic Activity for Formic Acid Oxidation. J. Phys. Chem. C 2010, 114, 21190–21200. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Wang, X.; Chen, Y.; Zhou, Y.; Tang, Y.; Lu, L.; Bao, J.; Lu, T. Preparation of Pd–Au/C catalysts with different alloying degree and their electrocatalytic performance for formic acid oxidation. Appl. Catal. B Environ. 2011, 102, 614–619. [Google Scholar] [CrossRef]
- Shen, T.; Lu, Y.; Gong, M.; Zhao, T.; Hu, Y.; Wang, D. Optimizing Formic Acid Electro-oxidation Performance by Restricting the Continuous Pd Sites in Pd–Sn Nanocatalysts. ACS Sustain. Chem. Eng. 2020, 8, 12239–12247. [Google Scholar] [CrossRef]
- Bao, Y.; Feng, L. Formic Acid Electro-oxidation Catalyzed by PdNi/Graphene Aerogel. Acta Phys.-Chim. Sin. 2021, 37, 2008031. [Google Scholar] [CrossRef]
- Bai, Z.; Yang, L.; Zhang, J.; Li, L.; Lv, J.; Hu, C.; Zhou, J. Solvothermal synthesis and characterization of Pd–Rh alloy hollow nanosphere catalysts for formic acid oxidation. Catal. Commun. 2010, 11, 919–922. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, H.; Zheng, J.; Duan, S.; Huang, Y.; Cui, Y.; Wang, R. Pd–Zn nanocrystals for highly efficient formic acid oxidation. Catal. Sci. Technol. 2018, 8, 4757–4765. [Google Scholar] [CrossRef]
- Li, R.; Hao, H.; Cai, W.-B.; Huang, T.; Yu, A. Preparation of carbon supported Pd–Pb hollow nanospheres and their electrocatalytic activities for formic acid oxidation. Electrochem. Commun. 2010, 12, 901–904. [Google Scholar] [CrossRef]
- Mebed, A.M.; Zeid, E.F.A.; Abd-Elnaiem, A.M. Synthesis and Thermal Treatment of Pd-Cr@Carbon for Efficient Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells. J. Inorg. Organomet. Polym. Mater. 2021, 31, 3772–3779. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Gao, Y.; Lu, T. Carbon-supported Pd–Ir catalyst as anodic catalyst in direct formic acid fuel cell. J. Power Sources 2008, 175, 784–788. [Google Scholar] [CrossRef]
- Demirci, U.B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J. Power Sources 2007, 173, 11–18. [Google Scholar] [CrossRef]
- Li, X.; Hsing, I.-M. Electrooxidation of formic acid on carbon supported PtxPd1−x (x = 0–1) nanocatalysts. Electrochim. Acta 2006, 51, 3477–3483. [Google Scholar] [CrossRef]
- Kang, Y.; Murray, C.B. Synthesis and Electrocatalytic Properties of Cubic Mn−Pt Nanocrystals (Nanocubes). J. Am. Chem. Soc. 2010, 132, 7568–7569. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhou, Z.; Zhuang, J.; Wang, X. Pd–Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities. Chem. Commun. 2010, 46, 1491–1493. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-C.; Hui, J.-F.; Guo, Z.-G.; Yu, Q.-Y.; Xu, B.; Zhang, X.; Liu, Z.-C.; Xu, C.-M.; Gao, J.-S.; Wang, X. Solvothermal synthesis of Pt–Pd alloys with selective shapes and their enhanced electrocatalytic activities. Nanoscale 2012, 4, 2633–2639. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, Y.; Wu, H.; Chen, W. Nano-PtPd Cubes on Graphene Exhibit Enhanced Activity and Durability in Methanol Electrooxidation after CO Stripping–Cleaning. J. Phys. Chem. C 2013, 117, 2926–2938. [Google Scholar] [CrossRef]
- Paoletti, C.; Cemmi, A.; Giorgi, L.; Giorgi, R.; Pilloni, L.; Serra, E.; Pasquali, M. Electro-deposition on carbon black and carbon nanotubes of Pt nanostructured catalysts for methanol oxidation. J. Power Sources 2008, 183, 84–91. [Google Scholar] [CrossRef]
- Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z.L. Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity. Science 2007, 316, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Zhou, Z.-Y.; Yu, N.-F.; Wang, L.-Y.; Sun, S.-G. Direct Electrodeposition of Tetrahexahedral Pd Nanocrystals with High-Index Facets and High Catalytic Activity for Ethanol Electrooxidation. J. Am. Chem. Soc. 2010, 132, 7580–7581. [Google Scholar] [CrossRef]
- Fu, W.; Liu, B.; Liu, J.; Han, X.; Deng, Y.; Zhong, C.; Hu, W. Square-Wave Potential-Modified Pt Particles for Methanol and Ammonia Oxidation. Int. J. Electrochem. Sci. 2021, 16, 210834. [Google Scholar] [CrossRef]
- Li, F.; Liu, B.; Shen, Y.; Liu, J.; Zhong, C.; Hu, W. Palladium Particles Modified by Mixed-Frequency Square-Wave Potential Treatment to Enhance Electrocatalytic Performance for Formic Acid Oxidation. Catalysts 2021, 11, 522. [Google Scholar] [CrossRef]
- Liu, J.; Fan, X.; Liu, X.; Song, Z.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method. ACS Appl. Mater. Interfaces 2017, 9, 18856–18864. [Google Scholar] [CrossRef]
- Lu, Y.; Jiang, Y.; Chen, W. PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2013, 2, 836–844. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Rezaee, S. Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation. Electrochim. Acta 2018, 259, 36–47. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, P.-F.; Yang, Z.-J.; Jiang, T.-W.; Yao, K.-L.; Han, R.; Huo, X.-X.; Xiong, Y.-Y. Bi-functional porous carbon spheres derived from pectin as electrode material for supercapacitors and support material for Pt nanowires towards electrocatalytic methanol and ethanol oxidation. Electrochim. Acta 2015, 163, 140–148. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, G.; Geng, D.; Chen, Y.; Banis, M.N.; Li, R.; Cai, M.; Sun, X. Direct Growth of Single-Crystal Pt Nanowires on Sn@CNT Nanocable: 3D Electrodes for Highly Active Electrocatalysts. Chem.-A Eur. J. 2010, 16, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Du, J.-J.; Luo, L.-M.; Zhang, R.-H.; Dai, Z.-X.; Zhou, X.-W. Facile Aqueous-Phase Synthesis and Electrochemical Properties of Novel PtPd Hollow Nanocatalysts. Electrochim. Acta 2016, 212, 966–972. [Google Scholar] [CrossRef]
- Wang, C.; Peng, B.; Xie, H.-N.; Zhang, H.-X.; Shi, F.; Cai, W.-B. Facile Fabrication of Pt, Pd and Pt−Pd Alloy Films on Si with Tunable Infrared Internal Reflection Absorption and Synergetic Electrocatalysis. J. Phys. Chem. C 2009, 113, 13841–13846. [Google Scholar] [CrossRef]
- Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H.; Nørskov, J. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A Chem. 1997, 115, 421–429. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, J.; Huang, X.; Yao, Y.; Zhang, W.; Shao, L. Copper-enriched palladium-copper alloy nanoparticles for effective electrochemical formic acid oxidation. Electrochem. Commun. 2016, 69, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhu, J.; Tiwary, C.S.; Ma, Z.; Huang, H.; Zhang, J.; Lu, Z.; Huang, W.; Wu, Y. Palladium Nanoparticles Supported on Nitrogen and Sulfur Dual-Doped Graphene as Highly Active Electrocatalysts for Formic Acid and Methanol Oxidation. ACS Appl. Mater. Interfaces 2016, 8, 10858–10865. [Google Scholar] [CrossRef]
- Yan, X.; Hu, X.; Fu, G.; Xu, L.; Lee, J.-M.; Tang, Y. Facile Synthesis of Porous Pd3 Pt Half-Shells with Rich “Active Sites” as Efficient Catalysts for Formic Acid Oxidation. Small 2018, 14, e1703940. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Zhao, Z.L.; Li, C.M. Formic acid-reduced ultrasmall Pd nanocrystals on graphene to provide superior electocatalytic activity and stability toward formic acid oxidation. Nano Energy 2015, 11, 71–77. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Liu, D.; Cui, G.; Dou, B.; Wang, J. Efficient anchoring of nanoscale Pd on three-dimensional carbon hybrid as highly active and stable catalyst for electro-oxidation of formic acid. Appl. Catal. B Environ. 2020, 263, 118304. [Google Scholar] [CrossRef]
- Zhu, F.; Ma, G.; Bai, Z.; Hang, R.; Tang, B.; Zhang, Z.; Wang, X. High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol, ethanol and formic acid electro-oxidation. J. Power Sources 2013, 242, 610–620. [Google Scholar] [CrossRef]
- Guo, S.; Dong, S.; Wang, E. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy Environ. Sci. 2010, 3, 1307–1310. [Google Scholar] [CrossRef]
- Bin, D.; Yang, B.; Ren, F.; Zhang, K.; Yang, P.; Du, Y. Facile synthesis of PdNi nanowire networks supported on reduced graphene oxide with enhanced catalytic performance for formic acid oxidation. J. Mater. Chem. A 2015, 3, 14001–14006. [Google Scholar] [CrossRef]
- Zhu, F.; Wang, M.; He, Y.; Ma, G.; Zhang, Z.; Wang, X. A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation. Electrochim. Acta 2014, 148, 291–301. [Google Scholar] [CrossRef]
- Lai, L.; Yang, G.; Zhang, Q.; Yu, H.; Peng, F. Essential analysis of cyclic voltammetry of methanol electrooxidation using the differential electrochemical mass spectrometry. J. Power Sources 2021, 509, 230397. [Google Scholar] [CrossRef]
- Petriev, I.; Pushankina, P.; Lutsenko, I.; Shostak, N.; Baryshev, M. Synthesis, Electrocatalytic and Gas Transport Characteristics of Pentagonally Structured Star-Shaped Nanocrystallites of Pd-Ag. Nanomaterials 2020, 10, 2081. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Test Protocol | Mass Activity (A mg−1) | Reference |
---|---|---|---|
Pd–Pt bimetallic catalysts with a dendritic morphology | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.77 | This work |
Pd1Cu3/CNTs | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.56 | [45] |
Pd/NS-G | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.50 | [46] |
Pd3Pt half-shells | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.32 | [47] |
Pd@graphene | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.09 | [48] |
Pd/CN | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.20 | [49] |
PdCuSn/CNFs | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.53 | [50] |
Pt/Pd bimetallic nanotubes with a petal-like surface | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.54 | [51] |
Pd1Ni1-NNs/RGO | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.60 | [52] |
PdSnAg/C | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.63 | [53] |
PdSn/C | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.17 | [53] |
PdSnNi/C | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.36 | [53] |
PdSnCo/C | 0.5 M H2SO4 + 0.5 M HCOOH, 50 mV s−1 | 0.29 | [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Li, F.; Zhong, C.; Hu, W. Clean Electrochemical Synthesis of Pd–Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid. Materials 2022, 15, 1554. https://doi.org/10.3390/ma15041554
Liu J, Li F, Zhong C, Hu W. Clean Electrochemical Synthesis of Pd–Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid. Materials. 2022; 15(4):1554. https://doi.org/10.3390/ma15041554
Chicago/Turabian StyleLiu, Jie, Fangchao Li, Cheng Zhong, and Wenbin Hu. 2022. "Clean Electrochemical Synthesis of Pd–Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid" Materials 15, no. 4: 1554. https://doi.org/10.3390/ma15041554
APA StyleLiu, J., Li, F., Zhong, C., & Hu, W. (2022). Clean Electrochemical Synthesis of Pd–Pt Bimetallic Dendrites with High Electrocatalytic Performance for the Oxidation of Formic Acid. Materials, 15(4), 1554. https://doi.org/10.3390/ma15041554