Ion Release and Surface Changes of Nickel–Titanium Archwires Induced by Changes in the pH Value of the Saliva—Significance for Human Health Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
- -
- NiTi archwire with untreated surface (uNiTi), (Sentalloy, Dentsply GAC, Bohemia, NY, USA);
- -
- NiTi archwire marketed as rhodium (Rh)-coated (RhNiTi), (High Aesthetic, Dentsply GAC, Bohemia, NY, USA);
- -
- NiTi archwire with a titanium nitride (TiN) surface (NNiTi), (IonGuard, Dentsply GAC, Bohemia, NY, USA).
3. Results
3.1. Ion Release
3.1.1. Nickel Ions Release
3.1.2. Titanium Ions Release
3.1.3. Ions Release for Two Wires
3.2. Surface Roughness
3.3. Mechanical Properties
3.4. Pearson Correlations
4. Discussion
4.1. The Human Health Risk Assessment—Hypersensitization to Nickel and Titanium
4.2. Surface and Mechanical Properties
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, S.P.; Lee, S.J.; Lim, B.S.; Ahn, S.J. Surface characteristics of orthodontic materials and their effects on adhesion of mutans streptococci. Angle Orthod. 2009, 79, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Khoroushi, M.; Kachuie, M. Prevention and treatment of white spot lesions in orthodontic patients. Contemp. Clin. Dent. 2017, 8, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Arneberg, P.; Giertsen, E.; Emberland, H.; Ogaard, B. Intra-oral variations in total plaque fluoride related to plaque pH. A study in orthodontic patients. Caries Res. 1997, 31, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Law, V.; Seow, W.K.; Townsend, G. Factors influencing oral colonization of mutans streptococci in young children. Aust. Dent. J. 2007, 52, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Katić, V.; Ćurković, L.; Ujević Bošnjak, M.; Špalj, S. Determination of corrosion rate of orthodontic wires based on nickel-titanium alloy in artificial saliva. Materialwiss Werkst 2014, 45, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Iijima, M.; Yuasa, T.; Endo, K.; Muguruma, T.; Ohno, H.; Mizoguchi, I. Corrosion behavior of ion implanted nickel-titanium orthodontic wire in fluoride mouth rinse solutions. Dent. Mater. J. 2010, 29, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Katic, V.; Curkovic, L.; Bosnjak, M.U.; Peros, K.; Mandic, D.; Spalj, S. Effect of pH, fluoride and hydrofluoric acid concentration on ion release from NiTi wires with various coatings. Dent. Mater. J. 2017, 36, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Rongo, R.; Ametrano, G.; Gloria, A.; Spagnuolo, G.; Galeotti, A.; Paduano, S.; Valletta, R.; D’Antò, V. Effects of intraoral aging on surface properties of coated nickel-titanium archwires. Angle Orthod. 2014, 84, 665–672. [Google Scholar] [CrossRef]
- Iijima, M.; Muguruma, T.; Brantley, W.; Brantley, W.; Choe, H.-C.; Nakagaki, S.; Alapati, S.B.; Mizoguchi, I. Effect of coating on properties of esthetic orthodontic nickel-titanium wires. Angle Orthod. 2012, 82, 319–325. [Google Scholar] [CrossRef]
- Da Silva, D.L.; Mattos, C.T.; Sant’ Anna, E.F.; Ruellas, A.C.; Elias, C.N. Cross-section dimensions and mechanical properties of esthetic orthodontic coated archwires. Am. J. Orthod. Dentofac. Orthop. 2013, 143, S85–S91. [Google Scholar] [CrossRef]
- Marek, M.; Topfl, E. Electrolytes for corrosion testing of dental alloys. J. Dent. Res. 1986, 65, 301. [Google Scholar]
- Arndt, M.; Brück, A.; Scully, T.; Jäger, A.; Bourauel, C. Nickel ion release from orthodontic Ni-Ti wires under simulation of realistic in-situ conditions. J. Mater. Sci. 2005, 40, 3659–3667. [Google Scholar] [CrossRef]
- Joint; FAO; World Health Organization; WHO Expert Committee on Food Additives. The International Programme on Chemical Safety Principles for the Safety Assessment of Food Additives and Contaminants in Food; World Health Organization: Geneva, Switzerland, 1987. [Google Scholar]
- Curtis, A.; Morton, J.; Balafa, C.; MacNeil, S.; Gawkrodger, D.J.; Warren, N.D.; Evans, G.S. The effects of nickel and chromium on human keratinocytes: Differences in viability, cell associated metal and IL-1α release. Toxicol. Vitr. 2007, 21, 809–819. [Google Scholar] [CrossRef] [PubMed]
- Terpilowska, S.; Siwicki, A.K. Cell cycle and transmembrane mitochondrial potential analysis after treatment with chromium(iii), iron(iii), molybdenum(iii) or nickel(ii) and their mixtures. Toxicol. Res. 2019, 8, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Rabbani-Chadegani, A.; Fani, N.; Abdossamadi, S.; Shahmir, N. Toxic effects of lead and nickel nitrate on rat liver chromatin components. J. Biochem. Mol. Toxicol. 2011, 25, 127–134. [Google Scholar] [CrossRef]
- Haber, L.T.; Allen, B.C.; Kimmel, C.A. Non-cancer risk assessment for nickel compounds: Issues associated with dose-response modeling of inhalation and oral exposures. Toxicol. Sci. 1998, 43, 213–229. [Google Scholar] [CrossRef]
- He, X.; Tang, J.; Wen, X.; Guan, B.; Wang, R.; Wang, H.; Li, H.; Shi, J.; Zeng, Y.; Mao, Y. Study of No Observed Adverse Effect Level of Nickel and Its Preliminary Evaluation Biocompatibility. Zhongguo Yi Liao Qi Xie Za Zhi 2020, 44, 448–452. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Zhao, F.; Tang, X.; Pei, F.; Dong, H.; Zhu, L.; Guo, K. Type-2 cannabinoid receptor regulates proliferation, apoptosis, differentiation, and OPG/RANKL ratio of MC3T3-E1 cells exposed to Titanium particles. Mol. Cell. Biochem. 2015, 399, 131–141. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Micronutrients. Arsenic, boron, nickel, silicon, and vanadium. In Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- European Food Safety Authority. Trusted Science for Safe Food. Available online: https://www.efsa.europa.eu/en (accessed on 9 June 2021).
- Nickel—Registration Dossier—ECHA. Available online: https://echa.europa.eu/sl/registration-dossier/-/registered-dossier/15544/1/2 (accessed on 7 June 2021).
- Titanium—Registration Dossier e ECHA. Available online: https://echa.europa.eu/sl/registration-dossier/-/registered-dossier/15537 (accessed on 7 June 2021).
- Thyssen, J.P.; McFadden, J.P.; Kimber, I. The multiple factors affecting the association between atopic dermatitis and contact sensitization. Allergy 2014, 69, 28–36. [Google Scholar] [CrossRef]
- Fischer, L.A.; Johansen, J.D.; Menné, T. Nickel allergy: Relationship between patch test and repeated open application test thresholds. Br. J. Dermatol. 2007, 157, 723–729. [Google Scholar] [CrossRef]
- Fischer, L.A.; Menné, T.; Johansen, J.D. Dose per unit area—A study of elicitation of nickel allergy. Contact Dermat. 2007, 56, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Fischer, L.A.; Menné, T.; Johansen, J.D. Experimental nickel elicitation thresholds--a review focusing on occluded nickel exposure. Contact Dermat. 2005, 52, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.S.; Menné, T.; Johansen, J.D. Systemic contact dermatitis after oral exposure to nickel: A review with a modified meta-analysis. Contact Dermat. 2006, 4, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Ahlström, M.G.; Thyssen, J.P.; Wennervaldt, M.; Menné, T.; Johansen, J.D. Nickel allergy and allergic contact dermatitis: A clinical review of immunology, epidemiology, exposure, and treatment. Contact Dermat. 2019, 81, 227–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, S.E.; Brankov, N. Nickel sensitization in children with atopic dermatitis and its relationship to Staphylococcus infection. Pract. Dermatol. 2016, 13, 42–66. [Google Scholar]
- Hosoki, M.; Nishigawa, K.; Miyamoto, Y.; Ohe, G.; Matsuka, Y. Allergic contact dermatitis caused by titanium screws and dental implants. J. Prosthodont. Res. 2016, 60, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoki, M.; Nishigawa, K.; Tajima, T.; Ueda, M.; Matsuka, Y. Cross-sectional observational study exploring clinical risk of titanium allergy caused by dental implants. J. Prosthodont. Res. 2018, 2, 426–431. [Google Scholar] [CrossRef]
- Egusa, H.; Ko, N.; Shimazu, T.; Yatani, H. Suspected association of an allergic reaction with titanium dental implants: A clinical report. J. Prosthet. Dent. 2008, 100, 344–347. [Google Scholar] [CrossRef]
- Müller, K.; Valentine-Thon, E. Hypersensitivity to titanium: Clinical and laboratory evidence. Neurendocrinol. Lett. 2006, 27 (Suppl. S1), 31–35. [Google Scholar]
- Sicilia, A.; Cuesta, S.; Coma, G.; Arregui, I.; Guisasola, C.; Ruiz, E.; Maestro, A. Titanium allergy in dental implant patients: A clinical study on 1500 consecutive patients. Clin. Oral Implant. Res. 2008, 19, 823–835. [Google Scholar] [CrossRef]
- Bradley, T.G.; Berzins, D.W.; Valeri, N.; Pruszynski, J.; Eliades, T.; Katsaros, C. An investigation into the mechanical and aesthetic properties of new generation coated nickel-titanium wires in the as-received state and after clinical use. Eur. J. Orthod. 2014, 36, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katić, V.; Curković, H.O.; Semenski, D.; Baršić, G.; Marušić, K.; Spalj, S. Influence of surface layer on mechanical and corrosion properties of nickel-titanium orthodontic wires. Angle Orthod. 2014, 84, 1041–1048. [Google Scholar] [CrossRef] [Green Version]
- Fors, R.; Persson, M. Nickel in dental plaque and saliva in patients with and without orthodontic appliances. Eur. J. Orthod. 2006, 28, 292–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amini, F.; Borzabadi Farahani, A.; Jafari, A.; Rabbani, M. In vivo study of metal content of oral mucosa cells in patients with and without fixed orthodontic appliances. Orthod. Craniofac. Res. 2008, 11, 51–56. [Google Scholar] [CrossRef]
- Bogdali, A.M.; Grazyna, A.; Wojciech, D.; Alexsander, O.; Anna, B.; Andrzej, K.; Zofia, M.; Krystyna, O. Nickel allergy and relationship with Staphylococcus aureus in atopic dermatitis. J. Trace Elem. Med. Biol. 2016, 33, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Bigerelle, M.; Marteau, J.; Mazeran, P.E.; Bouvier, S.; Iost, A. Effect of surface roughness in the determination of the mechanical properties of material using nanoindentation test. Scanning 2014, 36, 134–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iijima, M.; Muguruma, T.; Brantley, W.A.; Mizoguchi, I. Comparisons of nanoindentation, 3-point bending, and tension tests for orthodontic wires. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 65–71. [Google Scholar] [CrossRef]
Wire Type | pH | AM (SD) (µgcm−2) | p | η2 |
---|---|---|---|---|
uNiTi | 4.8 | 0.55 (0.10) a | 0.018 | 0.698 |
5.1 | 0.49 (0.02) a | |||
5.5 | 0.59 (0.15) a | |||
6.6 | 0.29 (0.06) b | |||
NNiTi | 4.8 | 1.45 (0.35) a | 0.011 | 0.735 |
5.1 | 1.20 (0.14) a | |||
5.5 | 0.50 (0.03) b | |||
6.6 | 0.86 (0.37) a,b | |||
RhNiTi | 4.8 | 144.83 (153.94) | 0.567 | 0.107 |
5.1 | 8.73 (5.96) | |||
5.5 | 34.03 (11.59) | |||
6.6 | 0.18 (0.02) |
Wire Type | pH | AM (SD) (µgcm−2) | p | η2 |
---|---|---|---|---|
uNiTi | 4.8 | 0.42 (0.11) a | <0.001 | 0.914 |
5.1 | 0.61 (0.10) b | |||
5.5 | 0.17 (0.04) c | |||
6.6 | 0.07 (0.04) c | |||
NNiTi | 4.8 | 0.34 (0.13) | 0.036 | 0.636 |
5.1 | 0.40 (0.21) | |||
5.5 | 0.11 (0.00) | |||
6.6 | 0.11 (0.01) | |||
RhNiTi | 4.8 | 4.20 (1.42) a | 0.004 | 0.798 |
5.1 | 2.16 (1.00) b | |||
5.5 | 2.04 (0.51) b | |||
6.6 | 0.05 (0.02) c |
Ions (µg) | Wire Type | pH | 2 Wires/1 Week | 2 Wires/4 Weeks |
---|---|---|---|---|
Ni | uNiTi | 4.8 | 0.99 | 3.96 |
5.1 | 0.88 | 3.53 | ||
5.5 | 1.06 | 4.25 | ||
6.6 | 0.52 | 2.09 | ||
NNiTi | 4.8 | 2.61 | 10.44 | |
5.1 | 2.16 | 8.64 | ||
5.5 | 0.90 | 3.60 | ||
6.6 | 1.55 | 6.19 | ||
RhNiTi | 4.8 | 260.69 | 1042.78 | |
5.1 | 15.71 | 62.86 | ||
5.5 | 61.25 | 245.02 | ||
6.6 | 0.32 | 1.30 | ||
Ti | uNiTi | 4.8 | 0.76 | 3.02 |
5.1 | 1.10 | 4.39 | ||
5.5 | 0.31 | 1.22 | ||
6.6 | 0.13 | 0.50 | ||
NNiTi | 4.8 | 0.61 | 2.45 | |
5.1 | 0.72 | 2.88 | ||
5.5 | 0.20 | 0.79 | ||
6.6 | 0.20 | 0.79 | ||
RhNiTi | 4.8 | 7.56 | 30.24 | |
5.1 | 3.89 | 15.55 | ||
5.5 | 3.67 | 14.69 | ||
6.6 | 0.09 | 0.36 |
uNiTi | RhNiTi | NNiTi | ||||
---|---|---|---|---|---|---|
pH | p | pH | p | pH | p | |
Ni/µgcm−2 | −0.688 * | 0.013 | −0.448 | 0.144 | −0.485 | 0.11 |
Ti/µgcm−2 | −0.765 * | 0.004 | −0.837 * | 0.001 | −0.614 * | 0.034 |
Rq/nm | 0.276 | 0.386 | −0.158 | 0.624 | −0.213 | 0.507 |
Ra/nm | 0.198 | 0.538 | −0.098 | 0.762 | −0.082 | 0.8 |
Rz/nm | 0.142 | 0.659 | −0.229 | 0.473 | −0.284 | 0.372 |
EIT (IT20 mN)/Nmm−2 | −0.061 | 0.852 | 0.573 * | 0.051 | 0.295 | 0.351 |
HIT (IT20 mN)/Nmm−2 | 0.357 | 0.254 | 0.388 | 0.213 | 0.589 * | 0.044 |
EIT (IT100 mN)/Nmm−2 | −0.124 | 0.701 | −0.193 | 0.547 | −0.649 * | 0.022 |
HIT (IT100 mN)/Nmm−2 | 0.422 | 0.172 | 0.449 | 0.144 | 0.272 | 0.392 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jusufi Osmani, Z.; Poljšak, B.; Zelenika, S.; Kamenar, E.; Marković, K.; Perčić, M.; Katić, V. Ion Release and Surface Changes of Nickel–Titanium Archwires Induced by Changes in the pH Value of the Saliva—Significance for Human Health Risk Assessment. Materials 2022, 15, 1994. https://doi.org/10.3390/ma15061994
Jusufi Osmani Z, Poljšak B, Zelenika S, Kamenar E, Marković K, Perčić M, Katić V. Ion Release and Surface Changes of Nickel–Titanium Archwires Induced by Changes in the pH Value of the Saliva—Significance for Human Health Risk Assessment. Materials. 2022; 15(6):1994. https://doi.org/10.3390/ma15061994
Chicago/Turabian StyleJusufi Osmani, Zana, Borut Poljšak, Saša Zelenika, Ervin Kamenar, Kristina Marković, Marko Perčić, and Višnja Katić. 2022. "Ion Release and Surface Changes of Nickel–Titanium Archwires Induced by Changes in the pH Value of the Saliva—Significance for Human Health Risk Assessment" Materials 15, no. 6: 1994. https://doi.org/10.3390/ma15061994
APA StyleJusufi Osmani, Z., Poljšak, B., Zelenika, S., Kamenar, E., Marković, K., Perčić, M., & Katić, V. (2022). Ion Release and Surface Changes of Nickel–Titanium Archwires Induced by Changes in the pH Value of the Saliva—Significance for Human Health Risk Assessment. Materials, 15(6), 1994. https://doi.org/10.3390/ma15061994