Relationship of Mineralogical Composition to Thermal Expansion, Spectral Reflectance, and Physico-Mechanical Aspects of Commercial Ornamental Granitic Rocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials (Granitic Rock Types)
2.2. Methods
2.2.1. Petrographical Investigation
2.2.2. X-ray Diffraction Analysis
2.2.3. X-ray Fluorescence Analysis
2.2.4. Thermo-Gravimetric Analysis
2.2.5. Linear Thermal Expansion
2.2.6. Spectral Reflectance
2.2.7. Physico-Mechanical Properties
3. Results
3.1. Petrographical Investigation
3.2. Geochemistry
3.3. Mineralogical Composition (XRD)
3.4. Thermal Analysis by (TG/DTG/DSC)
3.5. Linear Thermal Expansion
3.6. Spectral Reflectance
3.7. Physico-Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomes, V.R.; Babisk, M.P.; Vieira, C.M.F.; Sampaio, J.A.; Vidal, F.W.H.; Gadioli, M.C.B. Ornamental stone wastes as an alternate raw material for soda-lime glass manufacturing. Mater. Lett. 2020, 269, 127579. [Google Scholar] [CrossRef]
- Ciccu, R.; Cosentino, R.; Montanil, C.; El Kotb, A.; Hamdy, H. Strategic Study on the Egyptian Marble and Granite Sector; Industrial Modernisation Centre: Cairo, Egypt, 2005. [Google Scholar]
- Rana, A.; Kalla, P.; Verma, H.; Mohnot, J. Recycling of dimensional stone waste in concrete: A review. J. Clean. Prod. 2016, 135, 312–331. [Google Scholar] [CrossRef]
- Montani, C. XXIX World Marble and Stones Report; Aldus Casa di Edizioni: Carrara, Italy, 2018. [Google Scholar]
- Ludovico-Marques, M.; Chastre, C.; Vasconcelos, G. Modelling the compressive mechanical behaviour of granite and sandstone historical building stones. Constr. Build. Mater. 2012, 28, 372–381. [Google Scholar] [CrossRef]
- Lasheen, E.S.R.; Saleh, G.M.; Khaleal, F.M.; Alwetaishi, M. Petrogenesis of Neoproterozoic Ultramafic Rocks, Wadi Ibib—Wadi Shani, South Eastern Desert, Egypt: Constraints from Whole Rock and Mineral Chemistry. Appl. Sci. 2021, 11, 10524. [Google Scholar] [CrossRef]
- Lasheen, E.S.R.; Rashwan, M.A.; Osman, H.; Alamri, S.; Khandaker, M.U.; Hanfi, M.Y. Radiological Hazard Evaluation of Some Egyptian Magmatic Rocks Used as Ornamental Stone: Petrography and Natural Radioactivity. Materials 2021, 14, 7290. [Google Scholar] [CrossRef]
- Ramana, Y.; Sarma, L. Thermal expansion of a few Indian granitic rocks. Phys. Earth Planet. Inter. 1980, 22, 36–41. [Google Scholar] [CrossRef]
- De Castro Lima, J.J.; Paraguassú, A.B. Linear thermal expansion of granitic rocks: Influence of apparent porosity, grain size and quartz content. Bull. Eng. Geol. Environ. 2004, 63, 215–220. [Google Scholar] [CrossRef]
- Siegesmund, S.; Sousa, L.; Knell, C. Thermal expansion of granitoids. Environ. Earth Sci. 2018, 77, 41. [Google Scholar] [CrossRef]
- Plevova, E.; Vaculikova, L.; Kozusnikova, A.; Ritz, M.; Martynkova, G.S. Thermal expansion behaviour of granites. J. Therm. Anal. 2015, 123, 1555–1561. [Google Scholar] [CrossRef]
- Bailin, Y.; Xingli, W. Spectral reflectance features of rocks and ores and their applications. Chin. J. Geochem. 1991, 10, 188–195. [Google Scholar] [CrossRef]
- Carli, C.; Sgavetti, M. Spectral characteristics of rocks: Effects of composition and texture and implications for the interpreta-tion of planet surface compositions. Icarus 2011, 211, 1034–1048. [Google Scholar] [CrossRef]
- Nair, A.M.; Mathew, G. Effect of bulk chemistry in the spectral variability of igneous rocks in VIS-NIR region: Implications to remote compositional mapping. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 227–237. [Google Scholar] [CrossRef]
- Zhou, K.-F.; Wang, S.-S. Spectral properties of weathered and fresh rock surfaces in the Xiemisitai metallogenic belt, NW Xinjiang, China. Open Geosci. 2017, 9, 322–339. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Ding, X.; Liu, Y.; Zhou, X. Reflectance Spectral Features and Significant Minerals in Kaishantun Ophiolite Suite, Jilin Province, NE China. Minerals 2018, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- La Russa, M.F.; Ricca, M.; Belfiore, C.M.; Ruffolo, S.A.; DE Buergo Ballester, M.A.; Crisci, G.M. The contribution of earth sciences to the Preservation of underwater archaeological stone Materials: An analytical approach. Int. J. Conserv. Sci. 2015, 6, 335–348. [Google Scholar]
- Gautam, P.; Verma, A.; Singh, T.; Hu, W.; Singh, K. Experimental investigations on the thermal properties of Jalore granitic rocks for nuclear waste repository. Thermochim. Acta 2019, 681, 178381. [Google Scholar] [CrossRef]
- ASTM C97/C97M; Standard Test Method for Absorption and Bulk Specific Gravity of Dimension Stone. American Society for Testing and Materials: West Conshohocken, PA, USA, 2015.
- ASTM C170/C170M; Standard Test Method for Compressive Strength of Dimension Stone. American Society for Testing and Materials: West Conshohocken, PA, USA, 2015.
- BSEN 1936; British Standard Natural Stone Test Method—Determination of Apparent Density and Open Porosity. European Committee for Standardization: Brussels, Belgium, 2006.
- BSEN 1338; British Standard Concrete Paving Blocks—Requirements and Test Methods. European Committee for Standardization: Brussels, Belgium, 2003.
- Streckeisen, A. Classification and Nomenclature of Plutonic Rocks Recommendation of the IUGS Subcommission on the Sys-tematics of Igneous Rocks. Geol. Rundsch. 1974, 63, 773–786. [Google Scholar] [CrossRef]
- Cox, K.G.; Bell, J.D.; Pankhurst, R.J. The Interpretation of Igneous Rocks; Allen & Unwin: London, UK, 1979. [Google Scholar] [CrossRef]
- De la Roche, H.; Leterrier, J.; Grandclaude, P.; Marchal, M. A classification of volcanic and plutonic rocks using R1/R2diagrams and major-element analyses. Its relation with current nomenclature. Chem. Geol. 1980, 29, 183–210. [Google Scholar] [CrossRef]
- Shand, S.J. Eruptive Rocks, 4th ed.; John-Wiley: New York, NY, USA, 1951; 360p. [Google Scholar]
- Rickwood, P.C. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 1989, 22, 247–263. [Google Scholar] [CrossRef]
- Hine, R.H.; Williams, I.S.; Chappell, B.W.; White, J.R. Geochemical contrast between I-and S-type granitoids of the Kosciusko Batholiths. J. Geol. Soc. Aust. 1978, 25, 219–234. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Pet. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Pearce, J. Sources and settings of granitic rocks. Episodes 1996, 19, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.; Hashad, A.H. Precambrian of Egypt. In The Geology of Egypt; Said, R., Ed.; Balkema: Rotterdam, The Netherlands, 1990; pp. 201–245. [Google Scholar]
- Rajisha, K.R.; Deepa, B.; Pothan, L.A.; Thomas, S. Thermomechanical and spectroscopic characterization of natural fibre composites. In Interface Engineering of Natural Fibre Composites for Maximum Performance; Series in Composites Science and Engineering; Woodhead Publishing: Sawston, UK, 2011; pp. 241–274. [Google Scholar]
- Gautam, P.K.; Jha, M.K.; Verma, A.K.; Singh, T.N. Evolution of absorption energy per unit thickness of damaged sandstone. J. Therm. Anal. 2018, 136, 2305–2318. [Google Scholar] [CrossRef]
- Hartlieb, P.; Toifl, M.; Kuchar, F.; Meisels, R.; Antretter, T. Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution. Miner. Eng. 2016, 91, 34–41. [Google Scholar] [CrossRef]
- Xiao, H.; Qing, L.; Hongkai, C.; Hongmei, T.; Linfeng, W. Experimental analysis on physical and mechanical properties of thermal shock damage of granite. Frat. Integrità Strutt. 2016, 11, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Gautam, P.K.; Dwivedi, R.; Kumar, A.; Kumar, A.; Verma, A.K.; Singh, K.H.; Singh, T.N. Damage Characteristics of Jalore Granitic Rocks After Thermal Cycling Effect for Nuclear Waste Repository. Rock Mech. Rock Eng. 2021, 54, 235–254. [Google Scholar] [CrossRef]
- James, J.D.; Spittle, J.A.; Brown, S.G.R.; Evans, R.W. A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas. Sci. Technol. 2001, 12, R1–R15. [Google Scholar] [CrossRef]
- Wang, F.; Konietzky, H.; Frühwirt, T.; Dai, Y. Laboratory testing and numerical simulation of properties and thermal-induced cracking of Eibenstock granite at elevated temperatures. Acta Geotech. 2020, 15, 2259–2275. [Google Scholar] [CrossRef]
- Clark, R.N.; Swayze, G.A.; Gallagher, A.J.; King, T.V.V.; Calvin, W.M. The U.S. Geological Survey, Digital Spectral Library: Version 3: 0.2 to 3.0 Microns; U.S. Geological Survey Open File Report; U.S. Geological Survey: Reston, VA, USA, 2003.
- Borisova, D. Granite reflectance spectra behaviour depends to its rock-forming minerals, Annual U.M.G Part I. Geol. Geophys. 2004, 47, 233–236. [Google Scholar]
- ASTM C615/C615M; Standard Specification for Granite Dimension Stone. American Society for Testing and Materials: West Conshohocken, PA, USA, 2011.
Rock Types | Petrographical Properties | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rock Classification | Mineral Composition | |||||||||
Primary | Accessory | Secondary | ||||||||
a | Gandonna | Monzogranite | Plagioclase | K-feldspar | Quartz | Biotite | Allanite | Zircone | (Chlorite) | |
b | Pink granite | Monzogranite | Plagioclase | K-feldspar | Quartz | Biotite | Titanite | Zircone | (Chlorite) | |
c | Buff granite-I | Syanogranite | K-feldspar | Plagioclase | Quartz | Muscovite | (Saussurite) | (Kaolinite) | ||
d | Buff granite-II | Syanogranite | K-feldspar | Plagioclase | Quartz | Muscovite | (Saussurite) | |||
e | Fantazia | Monzogranite | Plagioclase | Quartz | (K-feldspar) | Biotite | (Saussurite) | |||
f | Red granite | Syanogranite | K-feldspar | Plagioclase | Quartz | Biotite | (Kaolinite) | (Saussurite) | ||
g | Rosa granite | Monzogranite | K-feldspar | Plagioclase | Quartz | Biotite | (Chlorite) | |||
h | Qusseir brown | Monzogranite | K-feldspar | Plagioclase | Quartz | Biotite | (Kaolinite) | (Saussurite) |
Oxides | Gandonna | Pink Granite | Buff Granite (I) | Buff Granite (II) | Fantazia | Red Granite | Rosa Granite | Qusseir Brown |
---|---|---|---|---|---|---|---|---|
SiO2 | 70.097 | 69.673 | 74.931 | 76.197 | 72.61 | 73.035 | 73.444 | 72.018 |
Al2O3 | 14.954 | 14.28 | 14.127 | 13.487 | 15.765 | 13.933 | 14.397 | 12.747 |
TiO2 | 0.215 | 0.397 | 0.062 | 0.079 | 0.032 | 0.155 | 0.15 | 0.209 |
Fe2O3 | 2.76 | 2.066 | 1.018 | 0.544 | 0.486 | 1.126 | 0.974 | 3.294 |
MgO | 0.503 | 0.903 | 0.2 | 0.139 | 0.163 | 0.299 | 0.51 | 0.183 |
Na2O | 4.503 | 5.049 | 4.482 | 4.488 | 6.046 | 5.757 | 4.489 | 5.024 |
K2O | 4.739 | 4.61 | 4.388 | 4.595 | 2.729 | 4.153 | 4.261 | 4.3 |
CaO | 1.352 | 1.216 | 0.42 | 0.386 | 1.693 | 0.469 | 0.776 | 0.768 |
MnO | 0.059 | 0.08 | 0.133 | 0.01 | 0.053 | 0.14 | 0.065 | 0.101 |
P2O5 | 0.146 | 0.19 | 0.043 | 0.03 | 0.073 | 0.073 | 0.137 | 0.057 |
LOI | 0.46 | 0.44 | 0.41 | 0.16 | 0.23 | 0.67 | 0.604 | 0.72 |
SC | 5 | UDL | 10.3 | 3 | UDL | 5.7 | UDL | UDL |
V | UDL | UDL | 2.9 | 2.2 | UDL | UDL | UDL | UDL |
Co | 19.1 | 44.5 | UDL | 2.3 | 21.2 | 29.8 | UDL | 28.4 |
Ni | 2.3 | 13.2 | 2.1 | 2.5 | 10.3 | 9.1 | UDL | 9.4 |
Cu | UDL | UDL | 4.5 | 4.2 | UDL | UDL | 3.4 | UDL |
Zn | 75.2 | 69.7 | 93.2 | 34.7 | 25.3 | 56.1 | 36.1 | 144 |
Ga | 21.7 | 19.4 | 30.9 | 22.7 | 25.9 | 17..9 | 16.6 | 28.4 |
Ge | 4.9 | 7.7 | 2.3 | UDL | 7.6 | 6.3 | UDL | 5.3 |
Rb | 154.3 | 124 | 282 | 175.4 | 70.2 | 112.7 | 111.5 | 79.5 |
Sr | 132.7 | 158 | 18.9 | 8.4 | 79.5 | 24.5 | 101.1 | 15.7 |
Y | 56.1 | 43.5 | 17.3 | 2.4 | 38.9 | 38.1 | 20.2 | 124.9 |
Zr | 192.8 | 268.3 | 36 | 49.4 | 53.7 | 195 | 107.8 | 627.3 |
Nb | 20.8 | 17.3 | 52.1 | 5.4 | UDL | 10.3 | 12.2 | 49.4 |
Mo | UDL | 3.3 | UDL | UDL | UDL | UDL | UDL | 4.6 |
Ag | 12.2 | 8.2 | UDL | UDL | 19.2 | 15.4 | UDL | 10.7 |
Cd | 9.7 | UDL | UDL | UDL | 12 | 6.1 | UDL | 0.8 |
Sn | 9 | 6.3 | 11.9 | 5.6 | 9.8 | 5.9 | 13.2 | 12.3 |
I | 10.9 | 12.8 | UDL | UDL | 6.6 | 8 | UDL | 12.1 |
Cs | UDL | UDL | 14.2 | 7.2 | UDL | 4.5 | UDL | UDL |
Ba | 322.9 | 620.9 | 41.4 | 6.4 | UDL | 305.9 | 125.8 | 335.1 |
La | 32.2 | 40.2 | 7.8 | 3 | UDL | 27.7 | 19.5 | 69.8 |
Ce | 113.3 | 70.4 | 0 | 10.3 | 9.4 | 52.7 | 10.4 | 122.6 |
Nd | 48.1 | 35.4 | 1.9 | UDL | UDL | 26.2 | 10.9 | 78.3 |
Sm | 12.6 | 18 | 5 | UDL | UDL | 28.5 | 2 | 13.8 |
Yb | 11 | 20.5 | UDL | UDL | 19.3 | 16.7 | UDL | 24.8 |
Hf | UDL | UDL | 5.2 | UDL | UDL | UDL | 5.5 | 3.7 |
Ta | UDL | UDL | 5.3 | UDL | UDL | UDL | UDL | UDL |
W | 297.5 | 556.9 | 6 | 17 | 479.8 | 457.7 | 5.3 | 410.9 |
Hg | 180.7 | 374.3 | UDL | UDL | 313.6 | 279.1 | UDL | 268.4 |
Tl | UDL | UDL | 3.9 | 5.3 | UDL | UDL | 8.2 | UDL |
Pb | 19.8 | 12.6 | 9.9 | 17.2 | 21.8 | 19.2 | 13.3 | 5.7 |
Th | 21.4 | 14.4 | 9 | 17.9 | UDL | 8.7 | 15 | UDL |
U | UDL | UDL | 7.2 | UDL | UDL | UDL | UDL | UDL |
Rock Types | Mineral Composition,% | |||||||
---|---|---|---|---|---|---|---|---|
Quartz | Plagioclase | Alkali Feldspar | Mica | Alteration Minerals | ||||
Albite | Orthoclase | Annite/Biotite | Zeolite | Prehnite | Kaolinite | |||
a | Gandonna | 37.7 | 41.2 | 12.1 | 4.2 | 3 | --- | 1.8 |
b | Pink granite | 36.6 | 43.1 | 15.5 | --- | 3.1 | 1.7 | --- |
c | Buff graniteI | 36.5 | 39.7 | 18.1 | 4.3 | 1.4 | --- | --- |
d | Buff graniteII | 37 | 39.2 | 19.8 | --- | 4 | --- | --- |
e | Fantazia | 32.1 | 58.9 | 9 | --- | --- | --- | --- |
f | Red granite | 24.5 | 47.2 | 28.3 | --- | --- | --- | --- |
g | Rosa granite | 34.3 | 40.3 | 25.4 | --- | --- | --- | --- |
h | Qusseir brown | 31.3 | 41.1 | 26.3 | --- | --- | 1.3 | --- |
Temperature, (T), °C | Granitic Rock Types | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gandonna | Pink Granite | Buff GraniteI | Buff GraniteII | Fantazia | Red Granite | Rosa Granite | Quessir Granite | |||||||||
dL/Lo, % | αT | dL/Lo, % | αT | dL/Lo, % | αT | dL/Lo, % | αT | dL/Lo, % | αT | dL/Lo, % | αT | dL/Lo, % | αT | dL/Lo, % | αT | |
50 | 0.0140 | 26.35 | −0.010 | −5.06 | 0.005 | 2.85 | 0.014 | 23.22 | 0.0014 | 0.69 | 0.0048 | 2.44 | −0.013 | −6.4 | 0.0081 | 4.42 |
100 | 0.0066 | 1.28 | −0.0190 | −2.73 | 0.0241 | 3.47 | 0.0318 | 5.68 | −0.0007 | −0.02 | 0.02582 | 3.75 | −0.015 | −2.3 | 0.0245 | 3.52 |
300 | 0.2758 | 10.97 | 0.2940 | 10.95 | 0.3520 | 13.11 | 0.3456 | 13.58 | 0.3051 | 11.34 | 0.3956 | 14.7 | 0.3827 | 14.2 | 0.3135 | 11.7 |
500 | 1.0751 | 23.78 | 0.8710 | 18.54 | 0.9381 | 20.05 | 0.8913 | 19.54 | 0.9116 | 19.49 | 1.0503 | 22.5 | 1.2811 | 27 | 0.8703 | 18.6 |
700 | 3.8856 | 59.70 | 1.4433 | 21.61 | 1.4656 | 21.82 | 1.3183 | 20.10 | 1.5800 | 23.63 | 1.6765 | 25.1 | 9.010 | 134 | 1.5341 | 23 |
1000 | 3.7579 | 39.39 | 1.5835 | 16.33 | 3.8806 | 40.04 | 1.608 | 16.83 | 1.7534 | 18.10 | 1.9067 | 19.7 | 5.3443 | 55.1 | 1.7391 | 17.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, A.M.; Lasheen, E.S.R.; Rashwan, M.A. Relationship of Mineralogical Composition to Thermal Expansion, Spectral Reflectance, and Physico-Mechanical Aspects of Commercial Ornamental Granitic Rocks. Materials 2022, 15, 2041. https://doi.org/10.3390/ma15062041
Alzahrani AM, Lasheen ESR, Rashwan MA. Relationship of Mineralogical Composition to Thermal Expansion, Spectral Reflectance, and Physico-Mechanical Aspects of Commercial Ornamental Granitic Rocks. Materials. 2022; 15(6):2041. https://doi.org/10.3390/ma15062041
Chicago/Turabian StyleAlzahrani, Abdullah M., El Saeed R. Lasheen, and Mohammed A. Rashwan. 2022. "Relationship of Mineralogical Composition to Thermal Expansion, Spectral Reflectance, and Physico-Mechanical Aspects of Commercial Ornamental Granitic Rocks" Materials 15, no. 6: 2041. https://doi.org/10.3390/ma15062041
APA StyleAlzahrani, A. M., Lasheen, E. S. R., & Rashwan, M. A. (2022). Relationship of Mineralogical Composition to Thermal Expansion, Spectral Reflectance, and Physico-Mechanical Aspects of Commercial Ornamental Granitic Rocks. Materials, 15(6), 2041. https://doi.org/10.3390/ma15062041