High-Energy Heavy Ion Irradiation of Al2O3, MgO and CaF2
Abstract
:1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Ion Irradiation Effects in Al2O3
3.2. Ion Irradiation Effects in MgO
3.3. Ion Irradiation Effects in CaF2
4. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Itoh, N.; Duffy, D.M.; Khakshouri, S.; Stoneham, A.M. Making tracks: Elelctron excitation roles in forming swift heavy ion tracks. J. Phys. Condens. Matter 2009, 21, 474205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM – the stopping and range of the ions in matter. Nucl. Instr. Meth. Phys. Res. Sect. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef] [Green Version]
- Toulemonde, M.; Assmann, W.; Dufour, C.; Meftah, A.; Trautmann, C. Nanometric transformation of the matter by short and intense electronic excitation: Experimental data versus inelastic thermal spike model. Nucl. Instrum. Meth. Phys. Res. B 2012, 277, 28–39. [Google Scholar] [CrossRef]
- Rymzhanov, R.A.; O′Connell, J.H.; Janse van Vuuren, A.; Skuratov, V.A.; Medvedev, N.; Volkov, A.E. Insight into picosecond kinetics of insulator surface under ionizing radiation. J. Appl. Phys. 2020, 127, 015901. [Google Scholar] [CrossRef]
- Ishikawa, N.; Taguchi, T.; Ogawa, H. Comprehensive Understanding of Hillocks and Ion Tracks in Ceramics Irradiated with Swift Heavy Ions. Quantum Beam Sci. 2020, 4, 43. [Google Scholar] [CrossRef]
- Karlušić, M.; Mičetić, M.; Kresić, M.; Jakšić, M.; Šantić, B.; Bogdanović-Radović, I.; Bernstorff, S.; Lebius, H.; Ban-d′Etat, B.; Žužek Rožman, K.; et al. Nanopatterning surfaces by grazing swift heavy ion irradiation. Appl. Surf. Sci. 2021, 541, 148467. [Google Scholar] [CrossRef]
- Bogdanović Radović, I.; Buljan, M.; Karlušić, M.; Skukan, N.; Božičević, I.; Jakšić, M.; Radić, N.; Dražić, G.; Bernstorff, S. Conditions for formation of germanium quantum dots in amorphous matrices by MeV ions: Comparison with standard thermal annealing. Phys. Rev. B 2012, 86, 165316. [Google Scholar] [CrossRef]
- Ochedowski, O.; Lehtinen, O.; Kaiser, U.; Turchanin, A.; Ban-d′Etat, B.; Lebius, H.; Karlušić, M.; Jakšić, M.; Schleberger, M. Nanostructuring graphene by dense electronic excitation. Nanotechnology 2015, 26, 465302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogdanović Radović, I.; Buljan, M.; Karlušić, M.; Jerčinović, M.; Dražić, G.; Bernstorff, S.; Boettger, R. Modification of semiconductor or metal nanoparticle lattices in amorphous alumina by MeV heavy ions. New J. Phys. 2016, 18, 093032. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, H.; Åhlgren, E.H.; Ochedowski, O.; Leino, A.A.; Mirzayev, R.; Kozubek, R.; Lebius, H.; Karlušić, M.; Jakšić, M.; Krasheninnikov, A.V.; et al. Creating nanoporous graphene with swift heavy ions. Carbon 2017, 114, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Lotito, V.; Karlušić, M.; Jakšić, M.; Tomić Luketić, K.; Müller, U.; Zambelli, T.; Fazinić, S. Shape Deformation in Ion Beam Irradiated Colloidal Monolayers: An AFM Investigation. Nanomaterials 2020, 10, 453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aumayr, F.; Facsko, S.; El-Said, A.S.; Trautmann, C.; Schleberger, M. Single ion induced surface nanostructures: A comparison between slow highly charged and swift heavy ions. J. Phys. Condens. Matter 2011, 23, 393001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, W.J.; Duffy, D.M.; Thomé, L.; Zhang, Y. The role of electronic energy loss in ion beam modification of materials. Curr. Opin. Solid State Mater. Sci. 2015, 19, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Iveković, D.; Žugec, P.; Karlušić, M. Energy Retention in Thin Graphite Targets after Energetic Ion Impact. Materials 2021, 14, 6289. [Google Scholar] [CrossRef] [PubMed]
- Rymzhanov, R.A.; Medvedev, N.A.; Volkov, A.E. Damage kinetics induced by swift heavy ion impacts onto films of different thicknesses. Appl. Surf. Sci. 2021, 566, 150640. [Google Scholar] [CrossRef]
- Karlušić, M.; Akcöltekin, S.; Osmani, O.; Monnet, I.; Lebius, H.; Jakšić, M.; Schleberger, M. Energy threshold for the creation of nanodots on SrTiO3 by swift heavy ions. New J. Phys. 2010, 12, 043009. [Google Scholar] [CrossRef]
- Karlušić, M.; Jakšić, M.; Lebius, H.; Ban-d′Etat, B.; Wilhelm, R.A.; Heller, R.; Schleberger, M. Swift heavy ion track formation in SrTiO3 and TiO2 under random, channeling and near-channeling conditions. J. Phys. D Appl. Phys. 2017, 50, 205302. [Google Scholar] [CrossRef]
- Karlušić, M.; Kozubek, R.; Lebius, H.; Ban-d′Etat, B.; Wilhelm, R.A.; Buljan, M.; Siketić, Z.; Scholz, F.; Meisch, T.; Jakšić, M.; et al. Response of GaN to energetic ion irradiation: Conditions for ion track formation. J. Phys. D Appl. Phys. 2015, 48, 325304. [Google Scholar] [CrossRef] [Green Version]
- Karlušić, M.; Rymzhanov, R.A.; O′Connell, J.H.; Bröckers, L.; Tomić Luketić, K.; Siketić, Z.; Fazinić, S.; Dubček, P.; Jakšić, M.; Provatas, G.; et al. Mechanisms of surface nanostructuring of Al2O3 and MgO by grazing incidence irradiation with swift heavy ions. Surf. Interf. 2021, 27, 101508. [Google Scholar] [CrossRef]
- Toulemonde, M.; Weber, W.J.; Li, G.; Shutthanandan, V.; Kluth, P.; Yang, T.; Wang, Y.; Zhang, Y. Synergy of nuclear and electronic losses in ion-irradiation processes – The case of vitreous silicon dioxide. Phys. Rev. B 2011, 83, 054106. [Google Scholar] [CrossRef] [Green Version]
- Weber, W.J.; Zarkadoula, E.; Pakarinen, O.H.; Sachan, R.; Chisolm, M.F.; Liu, P.; Xue, H.; Jin, K.; Zhang, Y. Synergy of elastic and inelastic energy loss on ion track formation in SrTiO3. Sci. Rep. 2015, 5, 7726. [Google Scholar] [CrossRef] [PubMed]
- Benyagoub, A.; Audren, A. Mechanism of the swift heavy ion induced epitaxial recrystallization in predamaged silicon carbide. J. Appl. Phys. 2009, 106, 083516. [Google Scholar] [CrossRef]
- Zhang, Y.; Sachan, R.; Pakarinen, O.H.; Chisolm, M.F.; Liu, P.; Xue, H.; Weber, W.J. Ionisation-induced annealing of pre-existing defects in silicon carbide. Nat. Commun. 2015, 6, 8049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinkle, S.J.; Skuratov, V.A.; Hoelzer, D.T. On the conflicting roles of ionizing radiation in ceramics. Nucl. Instrum. Meth. Phys. Res. B 2002, 191, 758–766. [Google Scholar] [CrossRef]
- Dunlop, A.; Jaskierowicz, G.; Della-Negra, S. Latent track formation in silicon irradiated by 30 MeV fullerenes. Nucl. Instrum. Meth. Phys. Res. Sect. B 1998, 146, 302–308. [Google Scholar] [CrossRef]
- Amekura, H.; Toulemonde, M.; Narumi, K.; Li, R.; Chiba, A.; Hirano, Y.; Yamada, K.; Yamamoto, S.; Ishikawa, N.; Okubo, N. Ion tracks in silicon formed by much lower energy deposition than the track formation threshold. Sci. Rep. 2021, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Länger, C.; Ernst, P.; Bender, M.; Severin, D.; Trautmann, C.; Schleberger, M.; Dürr, M. Single-ion induced surface modifications on hydrogen-covered Si(001) surfaces-significant difference between slow highly charged and swift heavy ions. New J. Phys. 2021, 23, 093037. [Google Scholar] [CrossRef]
- Karlušić, M.; Fazinić, S.; Siketić, Z.; Tadić, T.; Ćosić, D.D.; Božičević-Mihalić, I.; Zamboni, I.; Jakšić, M.; Schleberger, M. Monitoring ion track formation using in situ RBSc, ToF-ERDA, and HR-PIXE. Materials 2017, 10, 1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nečas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Aruga, T.; Katano, Y.; Ohmichi, T.; Okayasu, S.; Kazumata, Y. Amorphization behaviors in polycrystalline alumina irradiated with energetic iodine ions. Nucl. Instr. Meth. Phys. Res. B 2000, 166, 913–919. [Google Scholar] [CrossRef]
- Szenes, G. Ion-induced amorphization in ceramic materials. J. Nucl. Mater. 2005, 336, 81–89. [Google Scholar] [CrossRef]
- Skuratov, V.A.; Efimov, A.E.; Havancsak, K. Surface modification of MgAl2O4 and oxides with heavy ions of fission fragments energy. Nucl. Instr. Meth. Phys. Res. B 2006, 250, 245–249. [Google Scholar] [CrossRef]
- Skuratov, V.A.; O′Connel, J.; Kirilkin, N.S.; Neethling, J. On the threshold of damage formation in aluminum oxide via electronic excitations. Nucl. Instr. Meth. Phys. Res. B 2014, 326, 223–227. [Google Scholar] [CrossRef]
- Rymzhanov, R.; Medvedev, N.; O′Connell, J.H.; Janse van Vuuren, A.; Skuratov, V.A.; Volkov, A.E. Recrystallization as the governing mechanism of ion track formation. Sci. Rep. 2019, 9, 3837. [Google Scholar] [CrossRef] [PubMed]
- Aruga, T.; Katano, Y.; Ohmichi, T.; Okayasu, S.; Kazumata, Y.; Jitsukawa, S. Depth-dependent and surface damages in MgAl2O4 and MgO irradiated with energetic iodine ions. Nucl. Instr. Meth. Phys. Res. Sect. B 2002, 167, 94–100. [Google Scholar] [CrossRef]
- Skuratov, V.A.; Zinkle, S.J.; Efimov, A.E.; Havancsak, K. Surface defects in Al2O3 and MgO irradiated with high-energy heavy ions. Surf. Coat. Techn. 2005, 196, 56–62. [Google Scholar] [CrossRef]
- Thomé, L.; Debelle, A.; Garrido, G.; Trocellier, P.; Serruys, Y.; Velisa, G.; Miro, S. Combined effects of nuclear and electronic energy losses in solids irradiated with a dual-ion beam. Appl. Phy. Lett. 2013, 102, 141906. [Google Scholar] [CrossRef]
- Thomé, L.; Velisa, G.; Debelle, A.; Miro, S.; Garrido, G.; Trocellier, P.; Serruys, Y. Behavior of nuclear materials irradiated with a dual ion beam. Nucl. Instr. Meth. Phys. Res. Sect. B 2014, 326, 219–222. [Google Scholar] [CrossRef]
- Karlušić, M.; Ghica, C.; Negrea, R.F.; Siketić, Z.; Jakšić, M.; Schleberger, M.; Fazinić, M. On the threshold for ion track formation in CaF2. New J. Phys. 2017, 19, 023023. [Google Scholar] [CrossRef] [Green Version]
- Khalfaoui, N.; Görlich, M.; Müller, C.; Schleberger, M.; Lebius, H. Latent tracks in CaF2 studied with atomic force microscopy in air and in vacuum. Nucl. Instr. Meth. Phys. Res. Sect. B 2006, 145, 246–249. [Google Scholar] [CrossRef]
- Akcöltekin, S.; Roll, T.; Akcöltekin, E.; Klusmann, M.; Lebius, H.; Schleberger, M. Enhanced susceptibility of CaF2 to adsorption due to ion irradiation. Nucl. Instr. Meth. Phys. Res. Sect. B 2009, 267, 683–686. [Google Scholar] [CrossRef]
- Gruber, E.; Salou, P.; Bergen, L.; El Kharazzi, M.; Lattouf, E.; Grygiel, C.; Wang, Y.; Benyagoub, A.; Levavasseur, D.; Rangama, J.; et al. Swift heavy ion irradiation of CaF2–from grooves to hillocks in a single ion track. J. Phys. Condens. Matter 2016, 28, 405001. [Google Scholar] [CrossRef] [PubMed]
- Khalfaoui, N.; Rotaru, C.C.; Bouffard, S.; Toulemonde, M.; Stoquert, J.P.; Haas, F.; Trautmann, C.; Jensen, J.; Dunlop, A. Characterization of swift heavy ion tracks in CaF2 by scanning force and transmission electron microscopy. Nucl. Instr. Meth. Phys. Res. Sect. B 2005, 240, 819–828. [Google Scholar] [CrossRef]
- Toulemonde, M.; Benyagoub, A.; Trautmann, C.; Khalfaoui, N.; Boccanfuso, M.; Dufour, C.; Gourbilleau, F.; Grob, J.J.; Stoquert, J.P.; Constantini, J.M.; et al. Dense and nanometric electronic excitations induced by swift heavy ions in an ionic CaF2 crystal: Evidence for two thresholds of damage creation. Phys. Rev. B 2012, 85, 054112. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Grgyel, C.; Dufour, C.; Sun, J.R.; Wang, Z.G.; Zhao, Y.T.; Xiao, G.Q.; Cheng, R.; Zhou, X.M.; Ren, J.R.; et al. Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2. Sci. Rep. 2014, 4, 5742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szenes, G. Mixing of nuclear and electronic stopping powers in the formation of surface tracks on mica by fullerene impact. Nucl. Instr. Meth. Phys. Res. Sect. B 2002, 191, 27–31. [Google Scholar] [CrossRef]
- Karlušić, M.; Škrabić, M.; Majer, M.; Buljan, M.; Skuratov, V.A.; Jung, H.K.; Gamulin, O.; Jakšić, M. Infrared spectroscopy of ion tracks in amorphous SiO2 and comparison to gamma irradiation induced changes. J. Nucl. Mater. 2019, 514, 74–83. [Google Scholar] [CrossRef]
- Szenes, G. Comment on “Dense and nanometric electronic excitations induced by swift heavy ions in an ionic CaF2 crystal: Evidence for two thresholds of damage creation”. Phys. Rev. B 2013, 87, 056101. [Google Scholar] [CrossRef]
- Toulemonde, M.; Benyagoub, A.; Trautmann, C.; Khalfaoui, N.; Boccanfuso, M.; Dufour, C.; Gourbilleau, F.; Grob, J.J.; Stoquert, J.P.; Constantini, J.M.; et al. Reply to “Comment on ‘Dense and nanometric electronic excitations induced by swift heavy ions in an ionic CaF2 crystal: Evidence for two thresholds of damage creation’“. Phys. Rev. B 2013, 87, 056102. [Google Scholar] [CrossRef]
Material | Density (g/cm3) | Ion Beam and Energy | Se (keV/nm) | Sn (keV/nm) | R (μm) |
---|---|---|---|---|---|
Al2O3 | 3.95 | 600 keV I | 1.24 | 3.21 | 0.13 |
1.8 MeV I | 1.86 | 2.18 | 0.4 | ||
23 MeV I | 8.98 | 0.45 | 4.13 | ||
18 MeV Cu | 8.98 | 0.01 | 3.8 | ||
5 MeV Si | 4.59 | 0.04 | 1.88 | ||
12 MeV Si | 5.89 | 0.02 | 3.17 | ||
1 MeV p | 0.07 | 0 | 8.99 | ||
MgO | 3.58 | 400 keV I | 1 | 3.22 | 0.1 |
600 keV I | 1.1 | 3.01 | 0.14 | ||
23 MeV I | 8.23 | 0.41 | 4.49 | ||
5 MeV Si | 4.21 | 0.04 | 2.02 | ||
12 MeV Si | 5.63 | 0.02 | 3.4 | ||
1 MeV p | 0.07 | 0 | 9.64 | ||
CaF2 | 3.18 | 1.8 MeV I | 1.09 | 1.65 | 0.57 |
3 MeV O | 2.07 | 0.01 | 2.62 | ||
12 MeV O | 2.34 | 0.003 | 6.44 | ||
5 MeV Si | 3.27 | 0.03 | 2.78 | ||
12 MeV Si | 4.5 | 0.02 | 4.52 | ||
1 MeV p | 0.06 | 0 | 11.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanžek, J.; Dubček, P.; Fazinić, S.; Tomić Luketić, K.; Karlušić, M. High-Energy Heavy Ion Irradiation of Al2O3, MgO and CaF2. Materials 2022, 15, 2110. https://doi.org/10.3390/ma15062110
Hanžek J, Dubček P, Fazinić S, Tomić Luketić K, Karlušić M. High-Energy Heavy Ion Irradiation of Al2O3, MgO and CaF2. Materials. 2022; 15(6):2110. https://doi.org/10.3390/ma15062110
Chicago/Turabian StyleHanžek, Juraj, Pavo Dubček, Stjepko Fazinić, Kristina Tomić Luketić, and Marko Karlušić. 2022. "High-Energy Heavy Ion Irradiation of Al2O3, MgO and CaF2" Materials 15, no. 6: 2110. https://doi.org/10.3390/ma15062110