Influence of ZnF2 and WO3 on Radiation Attenuation Features of Oxyfluoride Tellurite WO3-ZnF2-TeO2 Glasses Using Phy-X/PSD Software
Abstract
:1. Introduction
2. Materials and Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, M.; Xue, X.; Yang, H.; Liu, D.; Wang, C.; Li, Z. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material. J. Hazard. Mater. 2016, 318, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Zhou, S.; Xue, X.; Feng, X.; Sayyed, M.I.; Khandaker, M.U.; Bradley, D.A. The potential use of boron containing resources for protection against nuclear radiation. Radiat. Phys. Chem. 2021, 188, 109601. [Google Scholar] [CrossRef]
- Kavaz, E.; Ghanim, E.H.; Abouhaswa, A.S. Optical, structural and nuclear radiation security proper-ties of newly fabricated V2O5-SrO-PbO glass system. J. Non-Cryst. Solids 2020, 538, 120045. [Google Scholar] [CrossRef]
- Araz, A.; Kavaz, E.; Durak, R. Neutron and photon shielding competences of aluminum open-cell foams filled with different epoxy mixtures: An experimental study. Radiat. Phys. Chem. 2021, 182, 109382. [Google Scholar] [CrossRef]
- McCaffrey, J.P.; Shen, H.; Downton, B.; Mainegra-Hing, E. Radiation attenuation by lead and nonlead materials used in radiation shielding garments. Med. Phys. 2007, 34, 530–537. [Google Scholar] [CrossRef]
- Mahmoud, K.; Sayyed, M.; Tashlykov, O. Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl. Eng. Technol. 2019, 51, 1835–1841. [Google Scholar] [CrossRef]
- Khazaalah, T.H.; Mustafa, I.S.; Al-Ghamdi, H.; Rahman, A.A.; Sayyed, M.I.; Almuqrin, A.H.; Zaid, M.H.M.; Hisam, R.; Malik, M.F.I.A.; Ezra, N.S.; et al. The Effect of WO3-Doped Soda Lime Silica SLS Waste Glass to Develop Lead-Free Glass as a Shielding Material against Radiation. Sustainability 2022, 14, 2413. [Google Scholar] [CrossRef]
- Abouhaswa, A.S.; Kavaz, E. A novel B2O3-Na2O-BaO-HgO glass system: Synthesis, physical, optical and nuclear shielding features. Ceram. Int. 2020, 46, 16166–16177. [Google Scholar] [CrossRef]
- Abouhaswa, A.S.; Kavaz, E. Bi2O3 effect on physical, optical, structural and radiation safety characteristics of B2O3-Na2O-ZnO-CaO glass system. J. Non-Cryst. Solids 2020, 535, 119993. [Google Scholar] [CrossRef]
- Akyildirim, H.; Kavaz, E.; El-Agawany, F.; Yousef, E.S.S.; Rammah, Y. Radiation shielding features of zirconolite silicate glasses using XCOM and FLUKA simulation code. J. Non-Cryst. Solids 2020, 545, 120245. [Google Scholar] [CrossRef]
- Kavaz, E.; Ekinci, N.; Tekin, H.O.; Sayyed, M.I.; Aygün, B.; Perişanoğlu, U. Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Prog. Nucl. Energy 2019, 115, 12–20. [Google Scholar] [CrossRef]
- Singh, V.P.; Badiger, N.M. Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glas. Phys. Chem. 2015, 41, 276–283. [Google Scholar] [CrossRef]
- Chanthima, N.; Kaewkhao, J.; Limkitjaroenporn, P.; Tuscharoen, S.; Kothan, S.; Tungjai, M.; Kaewjaeng, S.; Sarachai, S.; Limsuwan, P. Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiat. Phys. Chem. 2017, 137, 72–77. [Google Scholar] [CrossRef]
- Kaewjaeng, S.; Kothan, S.; Chaiphaksa, W.; Chanthima, N.; Rajaramakrishna, R.; Kim, H.J.; Kaewkhao, J. High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application. Radiat. Phys. Chem. 2019, 160, 41–47. [Google Scholar] [CrossRef]
- Kurudirek, M. Radiation shielding and effective atomic number studies in different types of shielding concretes, lead base and non-lead base glass systems for total electron interaction: A comparative study. Nucl. Eng. Des. 2014, 280, 440–448. [Google Scholar] [CrossRef]
- Cheewasukhanont, W.; Limkitjaroenporn, P.; Sayyed, M.; Kothan, S.; Kim, H.; Kaewkhao, J. High density of tungsten gadolinium borate glasses for radiation shielding material: Effect of WO3 concentration. Radiat. Phys. Chem. 2021, 192, 109926. [Google Scholar] [CrossRef]
- Kirdsiri, K.; Kaewkhao, J.; Chanthima, N.; Limsuwan, P. Comparative study of silicate glasses containing Bi2O3, PbO and BaO: Radiation shielding and optical properties. Ann. Nucl. Energy 2011, 38, 1438–1441. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K.; Thakur, S.; Kurudirek, M.; Rafiei, M.M. Structural investigations and nuclear radiation shielding ability of bismuth lithium antimony borate glasses. J. Phys. Chem. Solids 2021, 150, 109812. [Google Scholar] [CrossRef]
- El-Moneim, A.A. Effect of ZnF2 and WO3 on elastic properties of oxyfluoride tellurite ZnF2–WO3–TeO2 glasses: Theoretical analysis. Chin. J. Phys. 2020, 65, 412–423. [Google Scholar] [CrossRef]
- Bagheri, R.; Moghaddam, A.K.; Shirmardi, S.P.; Azadbakht, B.; Salehi, M. Determination of gamma-ray shielding properties for silicate glasses containing Bi2O3, PbO, and BaO. J. Non-Cryst. Solids 2018, 479, 62–71. [Google Scholar] [CrossRef]
- Chanthima, N.; Kaewkhao, J. Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Ann. Nucl. Energy 2013, 55, 23–28. [Google Scholar] [CrossRef]
- El-Khayatt, A.; Ali, A.; Singh, V.P. Photon attenuation coefficients of Heavy-Metal Oxide glasses by MCNP code, XCOM program and experimental data: A comparison study. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2014, 735, 207–212. [Google Scholar] [CrossRef]
- Al-Buriahi, M.S.; Rammah, Y.S. Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A 2019, 125, 678. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Laariedh, F.; Kumr, A.; Al Buriahi, M.S. Experimental studies on the gamma photons shielding competence of TeO2–PbO–BaO–Na2O–B2O3 glasses. Appl. Phys. A 2020, 126, 4. [Google Scholar] [CrossRef]
- Şakar, E.; Özpolat, Ö.F.; Alım, B.; Sayyed, M.; Kurudirek, M. Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108496. [Google Scholar] [CrossRef]
- Yousef, E.S.S. Characterization of oxyfluoride tellurite glasses through thermal, optical and ultrasonic measurements. J. Phys. D Appl. Phys. 2005, 38, 3970–3975. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Elmahroug, Y.; Elbashir, B.O.; Issa, S. Gamma-ray shielding properties of zinc oxide soda lime silica glasses. J. Mater. Sci. Mater. Electron. 2017, 28, 4064–4074. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Sayyed, M.I. Radiation attenuation properties of Bi2O3-Na2O-V2O5-TiO2-TeO2 glass system using Phy-X/ PSD software. Ceram. Int. 2020, 46, 4795–4800. [Google Scholar] [CrossRef]
- Cheewasukhanont, W.; Limkitjaroenporn, P.; Kothan, S.; Kedkaew, C.; Kaewkhao, J. The effect of particle size on radiation shielding properties for bismuth borosilicate glass. Radiat. Phys. Chem. 2020, 172, 108791. [Google Scholar] [CrossRef]
- Issa, S.A.; Saddeek, Y.; Sayyed, M.; Tekin, H.O.; Kilicoglu, O. Radiation shielding features using MCNPX code and mechanical properties of the PbO Na2O B2O3CaO Al2O3SiO2 glass systems. Compos. Part B Eng. 2019, 167, 231–240. [Google Scholar] [CrossRef]
- Al Hadeethi, Y.; Sayyed, M.I.; Kaewkhao, J.; Askin, A.; Rafah, B.M.; Mkawi, E.M.; Rajaramakrishna, R. Physical, structural, optical, and radiation shielding properties of B2O3–Gd2O3–Y2O3 glass system. Appl. Phys. A 2019, 125, 852. [Google Scholar] [CrossRef]
- Kamislioglu, M. An investigation into gamma radiation shielding parameters of the (Al:Si) and (Al+Na):Si-doped international simple glasses (ISG) used in nuclear waste management, deploying Phy-X/PSD and SRIM software. J. Mater. Sci. Mater. Electron. 2021, 32, 12690–12704. [Google Scholar] [CrossRef]
- Rajesh, M.; Kavaz, E.; Deva Prasad Raju, B. Photoluminescence, radiative shielding properties of Sm3+ ions doped fluoroborosilicate glasses for visible (reddish-orange) display and radiation shielding applications. Mater. Res. Bull. 2021, 142, 111383. [Google Scholar] [CrossRef]
- Kaur, P.; Singh, K.J.; Thakur, S.; Singh, P.; Bajwa, B.S. Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 206, 367–377. [Google Scholar] [CrossRef]
- Al-Buriahi, M.S.; Bakhsh, E.M.; Tonguc, B.; Bahadar Khan, S. Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram. Inter-Natl. 2020, 46, 19078–19083. [Google Scholar] [CrossRef]
- Ersundu, M.C.; Ersundu, A.E.; Gedikoğlu, N.; Şakar, E.; Büyükyıldız, M.; Kurudirek, M. Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO-MoO3-TeO2 glasses. J. Non-Cryst. Solids 2019, 524, 119648. [Google Scholar] [CrossRef]
- Rammah, Y.; El-Agwany, F.; Mahmoud, K.; Novatski, A.; El-Mallawany, R. Role of ZnO on TeO2-Li2O-ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WINXCOM program. J. Non-Cryst. Solids 2020, 544, 120162. [Google Scholar] [CrossRef]
- Ersundu, A.E.; Büyükyıldız, M.; Ersundu, M.C.; Şakar, E.; Kurudirek, M. The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energy 2018, 104, 280–287. [Google Scholar] [CrossRef]
Sample Code | ZnF2 | WO3 | TeO2 | Density (g/cm3) |
---|---|---|---|---|
ZnFWTe1 | 10 | 20 | 70 | 5.94 |
ZnFWTe2 | 20 | 20 | 60 | 5.90 |
ZnFWTe3 | 30 | 20 | 50 | 5.91 |
ZnFWTe4 | 20 | 10 | 70 | 5.72 |
ZnFWTe5 | 25 | 15 | 60 | 5.81 |
Pure TeO2 glass | 4.806 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almuqrin, A.H.; Sayyed, M.I. Influence of ZnF2 and WO3 on Radiation Attenuation Features of Oxyfluoride Tellurite WO3-ZnF2-TeO2 Glasses Using Phy-X/PSD Software. Materials 2022, 15, 2285. https://doi.org/10.3390/ma15062285
Almuqrin AH, Sayyed MI. Influence of ZnF2 and WO3 on Radiation Attenuation Features of Oxyfluoride Tellurite WO3-ZnF2-TeO2 Glasses Using Phy-X/PSD Software. Materials. 2022; 15(6):2285. https://doi.org/10.3390/ma15062285
Chicago/Turabian StyleAlmuqrin, Aljawhara H., and M. I. Sayyed. 2022. "Influence of ZnF2 and WO3 on Radiation Attenuation Features of Oxyfluoride Tellurite WO3-ZnF2-TeO2 Glasses Using Phy-X/PSD Software" Materials 15, no. 6: 2285. https://doi.org/10.3390/ma15062285
APA StyleAlmuqrin, A. H., & Sayyed, M. I. (2022). Influence of ZnF2 and WO3 on Radiation Attenuation Features of Oxyfluoride Tellurite WO3-ZnF2-TeO2 Glasses Using Phy-X/PSD Software. Materials, 15(6), 2285. https://doi.org/10.3390/ma15062285