Optimized ICPCVD-Based TiO2 for Photonics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Parametric Study Using ICPCVD Tool
3.1.1. Results
3.1.2. Discussion
3.2. Thick Layer and Post-Deposition Annealing
3.2.1. Results
3.2.2. Discussion
4. General Discussion and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Hammani, K.; Markey, L.; Lamy, M.; Kibler, B.; Arocas, J.; Fatome, J.; Dereux, A.; Weeber, J.-C.; Finot, C. Octave Spanning Supercontinuum in Titanium Dioxide Waveguides. Appl. Sci. 2018, 8, 543. [Google Scholar] [CrossRef] [Green Version]
- Qiu, F.; Spring, A.M.; Yokoyama, S. Athermal and High-Q Hybrid TiO2-Si3N4 Ring Resonator via an Etching-Free Fabrication Technique. ACS Photonics 2015, 2, 405–409. [Google Scholar] [CrossRef]
- Yang, J.; Hu, Y.; Jin, C.; Zhuge, L.; Wu, X. Structural and optical properties of Er-doped TiO2 thin films prepared by dual-frequency magnetron co-sputtering. Thin Solid Film. 2017, 637, 9–13. [Google Scholar] [CrossRef]
- Lamy, M.; Hammani, K.; Arocas, J.; Finot, C.; Weeber, J.-C. Broadband metal grating couplers embedded in Titanium dioxide waveguides. Opt. Lett. 2017, 42, 2778–2781. [Google Scholar] [CrossRef]
- Park, J.; Ozdemir, S.K.; Monifi, F.; Chadha, T.; Huang, S.H.; Biswas, P.; Yang, L. Titanium Dioxide Whispering Gallery Microcavities. Adv. Opt. Mater. 2014, 2, 711–717. [Google Scholar] [CrossRef]
- Ahmadi, L.; Kontturi, V.; Laukkanen, J.; Saarinen, J.; Honkanen, S.; Kuittinen, M.; Roussey, M. Strip-loaded waveguide on titanium dioxide thin films by nanoimprint replication. Opt. Lett. 2017, 42, 527–530. [Google Scholar] [CrossRef]
- Selhofer, H.; Ritter, E.; Linsbod, R. Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials. Appl. Optics 2002, 41, 756–762. [Google Scholar] [CrossRef]
- Lamy, M.; Finot, C.; Fatome, J.; Arocas, J.; Weeber, J.-C.; Hammani, K. Demonstration of High-Speed Optical Transmission at 2 µm in Titanium Dioxide Waveguides. Appl. Sci. 2017, 7, 631. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Wolden, C.A. Plasma-enhanced chemical vapor deposition of TiO2 thin films for dielectric applications. Thin Solid Film. 2006, 515, 1708–1713. [Google Scholar] [CrossRef]
- Evans, C.C.; Shtyrkova, K.; Bradley, J.D.; Reshef, O.; Ippen, E.; Mazur, E. Spectral broadening in anatase titanium dioxide waveguides at telecommunication and near-visible wavelengths. Opt. Express 2013, 21, 18582–18591. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Carette, M.; Granier, A.; Landesman, J.P.; Goullet, A. In situ spectroscopic ellipsometry study of TiO2 films deposited by plasma enhanced chemical vapour deposition. Appl. Surf. Sci. 2013, 283, 234–239. [Google Scholar] [CrossRef]
- Borras, A.; Alvarez, R.; Sanchez-Valencia, J.R.; Ferrer, J.; Gonzalez-Elipe, A.R. Critical thickness and nanoporosity of TiO2 optical thin films. Microporous Mesoporous Mater. 2012, 160, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Goullet, A.; Carette, M.; Granier, A.; Zhang, Y.; Landesman, J.P. Structural and optical properties of RF-biased PECVD TiO2 thin films deposited in an O2/TTIP helicon reactor. Vacuum 2016, 131, 231–239. [Google Scholar] [CrossRef]
- Borrás, A.; Sánchez-Valencia, J.R.; Garrido-Molinero, J.; Barranco, A.; González-Elipe, A.R. Porosity and microstructure of plasma deposited TiO2 thin films. Microporous Mesoporous Mater. 2009, 118, 314–324. [Google Scholar] [CrossRef]
- Bradley, J.D.; Evans, C.C.; Choy, J.T.; Reshef, O.; Deotare, P.B.; Parsy, F.; Phillips, K.C.; Lončar, M.; Mazur, E. Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices. Opt. Express 2012, 20, 23821–23831. [Google Scholar] [CrossRef]
- Hegeman, I.; Dijkstra, M.; Segerink, F.B.; Lee, W.; Garcia-Blanco, S.M. Development of low-loss TiO2 waveguides. Opt. Express 2020, 28, 5982–5990. [Google Scholar] [CrossRef]
- Hamdan, S.A.; Ibrahim, I.M.; Ali, I.M. Photodetector based on Rutile and Anatase TiO2 nanostructures/n-Si Heterojunction. J. Phys. Conf. Ser. 2021, 2114, 012025. [Google Scholar] [CrossRef]
- Gu, J.; Chakraborty, B.; Khatoniar, M.; Menon, V.M. A room-temperature polariton light-emitting diode based on monolayer WS2. Nat. Nanotechnol. 2019, 14, 1024–1028. [Google Scholar] [CrossRef]
- Wu, M.; Han, Z.; Van, V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Opt. Express 2010, 18, 11728–11736. [Google Scholar] [CrossRef]
- Granier, A.; Begou, T.; Makaoui, K.; Soussou, A.; Bêche, B.; Gaviot, E.; Besland, M.-P.; Goullet, A. Influence of Ion Bombardment and Annealing on the Structural and Optical Properties of TiOx Thin Films Deposited in Inductively Coupled TTIP/O2 Plasma. Plasma Processes Polym. 2009, 6, 741–745. [Google Scholar] [CrossRef]
- Sobczyk-Guzenda, A.; Owczarek, S.; Szymanowski, H.; Gazicki-Lipman, M. Amorphous and crystalline TiO2 coatings synthesized with the RF PECVD technique from metalorganic precursor. Vacuum 2015, 117, 104–111. [Google Scholar] [CrossRef]
- Szymanowski, H.; Sobczyk-Guzenda, A.; Rylski, A.; Jakubowski, W.; Gazicki-Lipman, M.; Herberth, U.; Olcaytug, F. Photo-induced properties of thin TiO2 films deposited using the radio frequency plasma enhanced chemical vapor deposition method. Thin Solid Film. 2007, 515, 5275–5281. [Google Scholar] [CrossRef]
- Borrás, A.; Cotrino, J.; González-Elipe, A.R. Type of plasmas and microstructures of TiO2 thin films prepared by plasma enhanced chemical vapor deposition. J. Electrochem. Soc. 2007, 154, 152. [Google Scholar] [CrossRef]
- Makaoui, K. Etude des Propriétés de Couches Minces d’Oxyde de Titane Déposées Par Procédés Plasmas (PECVD, Pulvérisation Magnétron Réactive DC et HPPMS). Ph.D. Thesis, Université de Nantes, Nantes, France, 2012. [Google Scholar]
- Rico, V.; Romero, P.; Hueso, J.L.; Espinós, J.P.; González-Elipe, R.A. Wetting angles and photocatalytic activities of illuminated TiO2 thin film. Catal. Today 2009, 143, 347–354. [Google Scholar] [CrossRef]
- Nizard, H.; Kosinova, M.L.; Fainer, N.I.; Rumyantsev, Y.M.; Ayupov, B.M.; Shubin, Y.V. Deposition of titanium dioxide from TTIP by plasma enhanced and remote plasma enhanced chemical vapor deposition. Surf. Coat. Technol. 2008, 202, 4076–4085. [Google Scholar] [CrossRef]
- Kwon, S.H.; Jang, D.S.; Lee, H.Y.; Lee, J.J. Structure of TiO2 films prepared by using inductively coupled plasma-assisted chemical vapor deposition (ICP-CVD). J. Korean Phys. Soc. 2011, 59, 3042–3046. [Google Scholar] [CrossRef]
- Hadjoub, I.; Touam, T.; Chelouche, A.; Atoui, M.; Solard, J.; Chakaroun, M.; Fischer, A.; Boudrioua, A.; Peng, L. Post-deposition annealing effect on RF-sputtered TiO2 thin-film properties for photonic applications. Appl. Phys. A. 2016, 122, 78. [Google Scholar] [CrossRef]
- Ranade, M.R.; Navrotsky, A.; Zhang, H.Z.; Banfield, J.F.; Elder, S.H.; Zaban, A.; Borse, P.H.; Kulkarni, S.K.; Doran, G.S.; Whitfield, H.J. Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. USA 2002, 99 (Suppl. 2), 6476–6481. [Google Scholar] [CrossRef] [Green Version]
Sample | M1 | M2 | M3 | M4 | M8 | M30 | M5 | M7 | M9 | M10 | M11 | M12 | M14 | M17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Table power (W) | 0 | 100 | 50 | 50 | 50 | 50 | 50 | 50 | 100 | 50 | 100 | 50 | 50 | 50 |
Source power (W) | 1000 | 1000 | 800 | 1200 | 1000 | 1000 | 1000 | 1500 | 1500 | 1500 | 1500 | 1000 | 1000 | 1000 |
Pressure (mTorr) | 50 | 50 | 50 | 50 | 50 | 30 | 20 | 50 | 50 | 20 | 20 | 12 | 14 | 17 |
Average bias (V) | 0 | 345 | 240 | 260 | 250 | 230 | 195 | 245 | 360 | 150 | 250 | 145 | 165 | 170 |
Refractive index @630 nm | 2.00 | 2.17 | 2.16 | 2.17 | 2.13 | 2.20 | 2.33 | 2.28 | 2.30 | 2.33 | 2.19 | 2.28 | 2.28 | 2.32 |
Morphology | Col. | Por. | Col. | C. | C. | C. | Por. | C.G. | C.G. | Por. | C. | Por. | Por. | Por. |
XRD pattern | Amorphous | One broad peak | Several broad peaks |
Sample | M14 | M14T | M5 | M5T | M10 | M10T | M9 | M9T | M7 | M7T |
---|---|---|---|---|---|---|---|---|---|---|
Thickness | 245 | 495 | 270 | 550 | 225 | 650 | 385 | 435 | 340 | 555 |
Refractive index | 2.29 | 2.47 | 2.33 | 2.38 | 2.33 | 2.51 | 2.30 | 2.37 | 2.28 | 2.31 |
Figure of merit S | 0.077 | 0.022 | 0.043 | 0.242 | 0.030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrieux, A.; Mennemanteuil, M.-M.; Geoffroy, N.; Emo, M.; Markey, L.; Hammani, K. Optimized ICPCVD-Based TiO2 for Photonics. Materials 2022, 15, 2578. https://doi.org/10.3390/ma15072578
Andrieux A, Mennemanteuil M-M, Geoffroy N, Emo M, Markey L, Hammani K. Optimized ICPCVD-Based TiO2 for Photonics. Materials. 2022; 15(7):2578. https://doi.org/10.3390/ma15072578
Chicago/Turabian StyleAndrieux, Aurore, Marie-Maxime Mennemanteuil, Nicolas Geoffroy, Mélanie Emo, Laurent Markey, and Kamal Hammani. 2022. "Optimized ICPCVD-Based TiO2 for Photonics" Materials 15, no. 7: 2578. https://doi.org/10.3390/ma15072578
APA StyleAndrieux, A., Mennemanteuil, M. -M., Geoffroy, N., Emo, M., Markey, L., & Hammani, K. (2022). Optimized ICPCVD-Based TiO2 for Photonics. Materials, 15(7), 2578. https://doi.org/10.3390/ma15072578