Study on the Tribological Behaviour of Nanolubricants during Micro Rolling of Copper Foils
Abstract
:1. Introduction
2. Experimental
2.1. Material
2.2. Preparation
2.3. Micro Rolling Tests
2.4. Characterization and Analytical Approaches
3. Results
3.1. The Rolling Performance of Foils under Different Lubrication Conditions
3.2. The Rolling Performance of Foils under Different Rolling Conditions
4. Discussion
4.1. The Effect of Lubrication Conditions
4.2. The Effects of Rolling Conditions
4.3. Lubrication Mechanisms
5. Conclusions
5.1. Summary
- The application of TiO2 nanolubricants remarkably improves the surface quality of rolled copper foils during rolling processes. An optimal fraction of 3.0 wt.% TiO2 nanolubricants improves the lubrication conditions at the contact regions, thereby improving the surface quality of rolled copper foils.
- When the amount of TiO2 nanoparticles is inadequate, few TiO2 nanoparticles enter the contact regions between rolls and foils, causing insufficient lubrication during rolling processes. In contrast, in lubricants with excessive TiO2 nanoparticles, marked agglomeration occurs at contact regions and promotes the generation of voids on the surface of rolled foils, thereby deteriorating the surface quality of the rolled copper foils.
- A large reduction ratio improves the surface quality refinement during rolling processes. A remarkable improvement in surface quality can be achieved using TiO2 nanolubricants with different reductions ranging from 10% to 50%.
5.2. Future Scope
- To further elucidate the lubrication mechanism of water-based lubricants in which nanoparticles are used in forming processes, it would be of great significance to establish an innovative numerical simulation model to explore the lubrication effects of lubricants during forming processes.
- The use of different nanoparticles in the water-based lubricants can be investigated for improving the lubrication effects while reducing costs.
- The role of TiO2 nanoparticles during micro forming processes is currently under-reported. Given that TiO2 nanoparticles exhibit excellent lubrication effects in the water-based lubricants used during micro forming processes, the processing and manufacturing of high-quality water-based lubricants with TiO2 nanoparticles would be a relevant research direction in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, T.; Li, C.; Wang, Y.; Liu, X.; An, Q.; Li, H.; Zhang, Y.; Cao, H.; Liu, B.; Wang, D.; et al. Carbon fiber reinforced polymer in drilling: From damage mechanisms to suppression. Compos. Struct. 2022, 286, 115232. [Google Scholar] [CrossRef]
- Ahmed, I.; Ahamd, J. TiO2 nanolubricant: An approach for performance improvement in a domestic air conditioner. Results Mater. 2022, 13, 100255. [Google Scholar] [CrossRef]
- Huang, S.; Wu, H.; Jiang, Z.; Huang, H. Water-based nanosuspensions: Formulation, tribological property, lubrication mechanism, and applications. J. Manuf. Process. 2021, 71, 625–644. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, F.; Barber, G.; Zou, Q.; Wang, J.; Guo, S.; Yuan, Y.; Jiang, Q. Role of nano-sized materials as lubricant additives in friction and wear reduction: A review. Wear 2022, 490–491, 204206. [Google Scholar] [CrossRef]
- Xia, W.; Zhao, J.; Wu, H.; Zhao, X.; Zhang, X.; Xu, J.; Hee, A.; Jiang, Z. Effects of Nano-TiO2 Additive in Oil-in-Water Lubricant on Contact Angle and Antiscratch behaviour. Tribol. Trans. 2016, 60, 362–372. [Google Scholar] [CrossRef]
- Kong, L.; Sun, J.; Bao, Y. Research on the physicochemical and tribological properties of Nano-TiO2 in the aqueous rolling liquid. Tribol. Mater. Surf. Interfaces 2016, 10, 172–177. [Google Scholar] [CrossRef]
- Meng, W.; Sun, J.; Wang, C.; Wu, P. PH-dependent lubrication mechanism of graphene oxide aqueous lubricants on the strip surface during cold rolling. Surf. Interfaces Anal. 2020, 53, 406–417. [Google Scholar] [CrossRef]
- Xiong, S.; Liang, D.; Wu, H.; Lin, W.; Chen, J.; Zhang, B. Preparation, characterization, tribological and lubrication performances of Eu doped CaWO4 nanoparticle as anti-wear additive in water-soluble fluid for steel strip during hot rolling. Appl. Surf. Sci. 2021, 539, 148090. [Google Scholar] [CrossRef]
- Wu, H.; Jia, F.; Zhao, J.; Huang, S.; Wang, L.; Jiao, S.; Huang, H.; Jiang, Z. Effect of water-based nanolubricant containing Nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear 2019, 426, 792–804. [Google Scholar] [CrossRef]
- Guzman, B.; Ribeiro, D.; Seabra, M.; Kalab, L. Experimental investigation of the tribological behaviour of lubricants with additive containing copper nanoparticles. Tribol. Inter. 2018, 117, 52–58. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; He, J.; Xia, X.; Pan, F. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Inter. 2016, 93, 63–70. [Google Scholar] [CrossRef]
- He, J.; Sun, J.; Meng, Y.; Tang, H.; Wu, P. Improved lubrication performance of MoS2-Al2O3 nanofluid through interfacial tribochemistry. Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126428. [Google Scholar] [CrossRef]
- Sun, J.; Meng, Y.; Zhang, B. Tribological behaviours and Lubrication Mechanism of Water-based MoO3 Nanofluid during Cold Rolling Process. J. Manuf. Process. 2021, 61, 518–526. [Google Scholar] [CrossRef]
- Du, S.; Sun, J.; Wu, P. Preparation, characterization and lubrication performances of graphene oxide-TiO2 nanofluid in rolling strips. Carbon 2018, 140, 338–351. [Google Scholar] [CrossRef]
- Bao, Y.; Sun, J.; Kong, L. Tribological properties and lubricating mechanism of SiO2 nanoparticles in water-based fluid. IOP Conf. Ser. Mater. Sci. Eng. 2017, 182, 012025. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Sun, J.; Kong, L. Effects of nano-SiO2 as water-based lubricant additive on surface qualities of strips after hot rolling. Tribol. Inter. 2017, 114, 257–263. [Google Scholar] [CrossRef]
- Meng, Y.; Sun, J.; Wu, P.; Dong, C.; Yan, X. The Role of Nano-TiO2 Lubricating Fluid on the Hot Rolled Surface and Metallographic Structure of SS41 Steel. Nanomaterials 2018, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Zhao, J.; Wu, H.; Zhao, X.; Zhang, X.; Xu, J.; Jiao, S.; Wang, X.; Zhou, C.; Jiang, Z. Effects of oil-in-water based nanolubricant containing TiO2 nanoparticles in hot rolling of 304 stainless steel. J. Mater. Process. Technol. 2018, 262, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhao, J.; Xia, W.; Cheng, X.; He, A.; Yun, J.; Wang, L.; Huang, H.; Jiao, S.; Huang, L.; et al. Analysis of TiO2 nano-additive water-based lubricants in hot rolling of microalloyed steel. J. Manuf. Process. 2017, 27, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Zhao, J.; Luo, L.; Huang, S.; Wang, L.; Zhang, S.; Jiao, S.; Huang, H.; Jiang, Z. Performance Evaluation and Lubrication Mechanism of Water-Based Nanolubricants Containing Nano-TiO2 in Hot Steel Rolling. Lubricants 2018, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Sun, J.; Niu, T.; Liu, N. Experimental research on tribological performance of water-based rolling liquid containing Nano-TiO2. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2014, 229, 104–109. [Google Scholar] [CrossRef]
- Zhu, Z.; Sun, J.; Wei, H.; Niu, T.; Zhu, Z. Research on Lubrication behaviours of Nano-TiO2 in Water-Based Hot Rolling Liquid. Adv. Mater. Res. 2013, 643, 139–143. [Google Scholar] [CrossRef]
- Huo, M.; Wu, H.; Xie, H.; Zhao, J.; Su, G.; Jia, F.; Li, Z.; Lin, F.; Li, S.; Zhang, H.; et al. Understanding the role of water-based nanolubricants in micro flexible rolling of aluminium. Tribol. Int. 2020, 151, 106378. [Google Scholar] [CrossRef]
- Huo, M.; Zhao, J.; Xie, H.; Li, Z.; Li, S.; Zhang, H.; Jiang, Z. Analysis of surface roughness alteration in micro flexible rolling. Wear 2019, 426, 1286–1295. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Jia, D.; Zhang, D.; Zhang, X. Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. Int. J. Mach. Tool Manuf. 2015, 99, 19–33. [Google Scholar] [CrossRef]
- Jiao, D.; Zheng, S.; Wang, Y.; Guan, R.; Cao, B. The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Appl. Surf. Sci. 2011, 257, 5720–5725. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Z.; Breidt, C.; Friedrich, K. Tribological properties of epoxy nanocomposites-I. Enhancement of the wear resistance by Nano-TiO2 particles. Wear 2005, 258, 141–148. [Google Scholar] [CrossRef]
- Lee, K.; Hwang, Y.; Cheong, S.; Kwon, L.; Kim, S.; Lee, J. Performance evaluation of nanolubricants of fullerene nanoparticles in refrigeration mineral oil. Curr. Appl. Phys. 2009, 9, 128–131. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Qin, B.; Xing, D.; Guo, Y.; Fan, R. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol. Lett. 2004, 17, 961–966. [Google Scholar] [CrossRef]
- Tao, X.; Jia, Z.; Kang, X. The ball-bearing effect of diamond nanoparticles as an oil additive. J. Phys. D Appl. Phys. 1996, 29, 2932. [Google Scholar] [CrossRef]
- Zhang, Z.; Haupert, F.; Friedrich, K. Enhancement of the Wear Resistance of Polymer Composites by Nano-Fillers. German Patent Application No. 10329228.4, 2003. [Google Scholar]
- Rastogi, R.; Yadav, M.; Bhattacharya, A. Application of molybdenum complexes of 1-aryl-2,5-dithiohydrazodicarbonamides as extreme pressure lubricant additives. Wear 2002, 252, 686–692. [Google Scholar] [CrossRef]
- Hu, Z.; Lai, R.; Lou, F.; Wang, L.; Chen, Z.; Chen, G. Preparation and tribological properties of nanometer magnesium borate as lubricating oil additive. Wear 2002, 252, 370–374. [Google Scholar] [CrossRef]
- Ginzburg, B.; Shibaev, L.; Kirreenko, O.; Shepelevskii, A.; Baidakova, M.; Sitnikova, A. Antiwear effect of fullerene C6 0 additives to lubricating oils. Russ. J. Appl. Chem. 2002, 75, 1330–1335. [Google Scholar] [CrossRef]
Lubricant Type | Description |
---|---|
1 | Dry |
2 | 1.0 wt.% TiO2 + SDBS + PAAS + balance water |
3 | 3.0 wt.% TiO2 + SDBS + PAAS + balance water |
4 | 5.0 wt.% TiO2 + SDBS + PAAS + balance water |
5 | 7.0 wt.% TiO2 + SDBS + PAAS + balance water |
6 | 9.0 wt.% TiO2 + SDBS + PAAS + balance water |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Zhao, J.; Zhang, M.; Jiang, Z.; Zhou, C.; Ma, X. Study on the Tribological Behaviour of Nanolubricants during Micro Rolling of Copper Foils. Materials 2022, 15, 2600. https://doi.org/10.3390/ma15072600
Ma L, Zhao J, Zhang M, Jiang Z, Zhou C, Ma X. Study on the Tribological Behaviour of Nanolubricants during Micro Rolling of Copper Foils. Materials. 2022; 15(7):2600. https://doi.org/10.3390/ma15072600
Chicago/Turabian StyleMa, Linan, Jingwei Zhao, Mingya Zhang, Zhengyi Jiang, Cunlong Zhou, and Xiaoguang Ma. 2022. "Study on the Tribological Behaviour of Nanolubricants during Micro Rolling of Copper Foils" Materials 15, no. 7: 2600. https://doi.org/10.3390/ma15072600
APA StyleMa, L., Zhao, J., Zhang, M., Jiang, Z., Zhou, C., & Ma, X. (2022). Study on the Tribological Behaviour of Nanolubricants during Micro Rolling of Copper Foils. Materials, 15(7), 2600. https://doi.org/10.3390/ma15072600