Fabrication of MgO-Y2O3 Composite Nanopowders by Combining Hydrothermal and Seeding Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powders
2.2. HP Process
2.3. Characterization
3. Results and Discussion
3.1. Characterization of the MgO-Y2O3 Nanopowders
3.2. Characterization of the MgO-Y2O3 Ceramics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mathew, C.T.; Thomas, J.K.; Swapna, Y.V.; Koshy, J.; Solomon, S. A Comprehensive analysis of the influence of resistive coupled microwave sintering on the optical, thermal and hardness properties of infrared transparent yttria-magnesia composites. Ceram. Int. 2017, 43, 17048–17056. [Google Scholar]
- He, Y.; Liu, K.; Xiang, B.; Zhou, C.; Zhang, L.; Liu, G.; Guo, X.; Zhai, J.; Li, T.; Kong, L.B. An overview on transparent ceramics with pyrochlore and fluorite structures. J. Adv. Dielectr. 2020, 10, 2030001. [Google Scholar] [CrossRef]
- Fu, Z.; Li, X.; Ren, Y.; Zhang, M.; Geng, X.; Zhu, Q.; Li, J.G.; Sun, X. Coating Y2O3 nano-particles with ZrO2-additive via precipitation method for colloidal processing of highly transparent Y2O3 ceramics. J. Eur. Ceram. Soc. 2019, 39, 4996–5004. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, W.; Feng, J. Dependence of spectroscopic and thermal properties on concentration and temperature for Yb:Y2O3 transparent ceramics. J. Eur. Ceram. Soc. 2015, 35, 2547–2554. [Google Scholar] [CrossRef]
- Lukowiak, A.; Zur, L.; Tran, T.; Meneghetti, M.; Berneschi, S.; Nunzi Conti, G.; Pelli, S.; Trono, C.; Bhaktha, B.N.; Zonta, D.; et al. Sol-gel-derived glass-ceramic photorefractive films for photonic structures. Crystals 2017, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Zhang, Z.; Wang, X.; Lu, Z.; Kou, H.; Su, L.; Wu, A. Growth and characterization of Ce-doped luag single crystal fibers from transparent ceramics by laser-heated pedestal method. Crystals 2021, 11, 1149. [Google Scholar] [CrossRef]
- Fan, J.; Xu, Y.; Qin, X.; Mao, X.; Zhang, L. Comparative study on transmittance and radiance of sapphire, YAG, spinel, MgF2 and Y2O3 at high temperatures. Infrared Technol. 2017, 39, 951–957. [Google Scholar]
- Han, C. Development trends and analysis of the infrared countermeasure technology. Ship Electron. Eng. 2009, 29, 43–46. [Google Scholar]
- Zhang, W.; Wu, J.; Hu, X. A test method to real laser seeker based on electro-optic countermeasure. Infrared Laser Eng. 2013, 42, 637–642. [Google Scholar]
- Rhodes, W.H. Controlled transient solid second-phase sintering of yttria. J. Am. Ceram. Soc. 1981, 64, 13–19. [Google Scholar] [CrossRef]
- Mao, X.; Li, X.; Feng, M.; Fan, J.; Jiang, B.; Zhang, L. Cracks in transparent La-doped yttria ceramics and the formation mechanism. J. Eur. Ceram. Soc. 2015, 35, 3137–3143. [Google Scholar] [CrossRef]
- Yin, D.; Wang, J.; Ni, M.; Liu, P.; Dong, Z.; Tang, D. Fabrication of highly transparent Y2O3 ceramics with CaO as sintering aid. Materials 2021, 14, 444. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Deng, J.; Wang, H.; Zhang, Y.; Duan, J.; Tang, Z.; Yang, Y.; He, D.; Qi, J.; Lu, T. A New method for the preparation of transparent Y2O3 nanocrystalline ceramic with an average grain size of 20 nm. Scr. Mater. 2020, 182, 57–61. [Google Scholar] [CrossRef]
- Yavetskiy, R.P.; Baumer, V.N.; Dulina, N.A.; Pazura, Y.I.; Petrusha, I.A.; Tkach, V.N.; Tolmachev, A.V.; Turkevich, V.Z. An approach to Y2O3:Eu3+ optical nanostructured ceramics. J. Eur. Ceram. Soc. 2012, 32, 257–260. [Google Scholar] [CrossRef]
- Horvath, S.F.; Harmer, M.P. Analytical transmission electron microscopy of La2O3-doped Y2O3. J. Mater. Sci. 1989, 24, 863–872. [Google Scholar] [CrossRef]
- Yoshida, H.; Morita, K.; Kim, B.N.; Hiraga, K.; Kodo, M.; Soga, K.; Yamamoto, T. Densification of nanocrystalline yttria by low temperature spark plasma sintering. J. Am. Ceram. Soc. 2008, 91, 1707–1710. [Google Scholar] [CrossRef]
- Ma, H.J.; Jung, W.K.; Park, Y.; Kim, D.K. A novel approach of an infrared transparent Er:Y2O3 -MgO nanocomposite for eye-safe laser ceramics. J. Mater. Chem. C 2018, 6, 11096–11103. [Google Scholar] [CrossRef]
- Blair, V.L.; Fleischman, Z.D.; Merkle, L.D.; Ku, N.; Moorehead, C.A. Co-precipitation of rare-earth-doped Y2O3 and MgO nanocomposites for mid-infrared solid-state lasers. Appl. Opt. 2017, 56, 154–158. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Ning, K.; Luo, D.; Yang, H.; Yin, D.; Tang, D.; Kong, L.B. Densification of yttria transparent ceramics: The utilization of activated sintering. J. Am. Ceram. Soc. 2016, 99, 1671–1675. [Google Scholar] [CrossRef]
- Ikegami, T.; Kobayashi, M.; Moriyoshii, Y.; Shirasaki, S.I.; Suzuki, H. Characterization of sintered MgO compacts with fluorine. J. Am. Ceram. Soc. 1980, 63, 640–643. [Google Scholar] [CrossRef]
- Chen, M.; He, J.; Zhang, Y.; Ding, Z.; Luo, J. Densification and grain growth behaviour of high-purity MgO ceramics by hot-pressing. Ceram. Int. 2017, 43, 1775–1780. [Google Scholar] [CrossRef]
- Harris, D.C. Durable 3-5 µm Transmitting infrared window materials. Infrared Phys. Technol. 1998, 39, 185–201. [Google Scholar] [CrossRef]
- Harris, D.C.; Cambrea, L.R.; Johnson, L.F.; Seaver, R.T.; Baronowski, M.; Gentilman, R.; Scott Nordahl, C.; Gattuso, T.; Silberstein, S.; Rogan, P.; et al. Properties of an infrared-transparent MgO:Y2O3 nanocomposite. J. Am. Ceram. Soc. 2013, 96, 3828–3835. [Google Scholar] [CrossRef]
- Mangalaraja, R.V.; Mouzon, J.; Hedström, P.; Kero, I.; Ramam, K.V.S.; Camurri, C.P.; Odén, M. Combustion synthesis of Y2O3 and Yb-Y2O3. J. Mater. Process. Technol. 2008, 208, 415–422. [Google Scholar] [CrossRef]
- Zhang, L.; Ben, Y.; Wu, J.; Yang, H.; Wong, C.; Zhang, Q.; Chen, H. Alumina assisted grain refinement and physical performance enhancement of yttria transparent ceramics by two-step sintering. Mater. Sci. Eng. 2017, 684, 466–469. [Google Scholar] [CrossRef]
- Kumar, R.S.; Priyanka, K.H.S.; Khanra, A.K.; Johnson, R. A Novel approach of synthesizing nano Y2O3 powders for the fabrication of submicron IR transparent ceramics. Ceram. Int. 2021, 47, 16986–16999. [Google Scholar] [CrossRef]
- Kargar, H.; Ghasemi, F.; Darroudi, M. Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays. Ceram. Int. 2015, 41, 1589–1594. [Google Scholar] [CrossRef]
- Ikeg, T.; Mori, T.; Yajima, Y.; Takenouchi, S.; Misawa, T.; Moriyoshi, Y. And doping by sulfate ions. J. Ceram. Soc. Jpn. 1999, 107, 297–299. [Google Scholar]
- Vaez, S.H.; Razavi, R.S.; Loghman-Estarki, M.R.; Alhaji, A.; Ghorbani, S.; Mishra, A.K. Development of magnesia-yttria nanocomposite powder by new non-alkoxide sol-gel method. Ceram. Int. 2017, 43, 1217–1226. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Ning, K.; Ma, J.; Luo, D.; Yin, D.; Yang, H.; Tang, D.; Kong, L.B. Densification of zirconia doped yttria transparent ceramics using co-precipitated powders. Ceram. Int. 2016, 42, 10770–10778. [Google Scholar] [CrossRef]
- Yoshimura, M.; Byrappa, K. Hydrothermal processing of materials: Past, present and future. J. Mater. Sci. 2008, 43, 2085–2103. [Google Scholar] [CrossRef]
- Sharma, P.K.; Jilavi, M.H.; NAû, R.; Schmidt, H. Seeding effect in hydrothermal synthesis of nanosize yttria. J. Mater. Sci. 1998, 17, 823–825. [Google Scholar]
- Jung, W.K.; Ma, H.J.; Park, Y.; Kim, D.K. A robust approach for highly transparent Y2O3 ceramics by stabilizing oxygen defects. Scr. Mater. 2017, 137, 1–4. [Google Scholar] [CrossRef]
- Fu, Z.; Li, X.; Zhang, M.; Zhu, Q.; Li, J.; He, J.; Wang, X.; Sun, X. Achieving fabrication of highly transparent Y2O3 ceramics via air pre-sintering by deionization treatment of suspension. J. Am. Ceram. Soc. 2021, 104, 2689–2701. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Sun, X.; Sun, G.; Liang, Y.; Bi, J. Mechanical properties and microstructure of hot-pressed silica matrix composites. Materials 2022, 15, 3666. [Google Scholar] [CrossRef]
- Halikia, I.; Neou-Syngouna, P.; Kolitsa, D. Isothermal kinetic analysis of the thermal decomposition of magnesium hydroxide using thermogravimetric data. Thermochim. Acta 1998, 320, 75–88. [Google Scholar] [CrossRef]
- Iwasaki, S.; Kodani, S.; Koga, N. Physico-geometrical kinetic modeling of the thermal decomposition of magnesium hydroxide. J. Phys. Chem. C 2020, 124, 2458–2471. [Google Scholar] [CrossRef]
- Shen, Z.; Zhu, Q.; Feng, T.; Qian, K.; Xie, J.; Liu, L.; Zhang, G.; Wang, W.; Yuan, Q.; Feng, M.; et al. Fabrication of infrared-transparent Y2O3-MgO composites using nanopowders synthesized via thermal decomposition. Ceram. Int. 2021, 47, 13007–13014. [Google Scholar] [CrossRef]
- Mehta, P.K. History and Status of Performance Tests for Evaluation of Soundness of Cements. Cement Standards-Evolution and Trends; ASTM: West Conshohocken, PA, USA, 1978; p. 663. [Google Scholar]
- Kabir, H.; Hooton, R.D.; Popoff, N.J. Evaluation of cement soundness using the ASTM C151 autoclave expansion test. Cem. Conc. Res. 2020, 136, 106159. [Google Scholar] [CrossRef]
- Ma, H.J.; Jung, W.K.; Baek, C.; Kim, D.K. Influence of microstructure control on optical and mechanical properties of infrared transparent Y2O3-MgO nanocomposite. J. Eur. Ceram. Soc. 2017, 37, 4902–4911. [Google Scholar] [CrossRef]
- Pratapa, S.; O’Connor, B.; Hunter, B. A comparative study of single-line and rietveld strain-size evaluation procedures using MgO ceramics. J. Appl. Crystallogr. 2002, 35, 155–162. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Lan, H.; Sun, X.; Feng, S.; Zhang, W. Fabrication of MgO-Y2O3 Composite Nanopowders by Combining Hydrothermal and Seeding Methods. Materials 2023, 16, 126. https://doi.org/10.3390/ma16010126
Yang S, Lan H, Sun X, Feng S, Zhang W. Fabrication of MgO-Y2O3 Composite Nanopowders by Combining Hydrothermal and Seeding Methods. Materials. 2023; 16(1):126. https://doi.org/10.3390/ma16010126
Chicago/Turabian StyleYang, Shangyu, Hao Lan, Xiaoming Sun, Shaowei Feng, and Weigang Zhang. 2023. "Fabrication of MgO-Y2O3 Composite Nanopowders by Combining Hydrothermal and Seeding Methods" Materials 16, no. 1: 126. https://doi.org/10.3390/ma16010126
APA StyleYang, S., Lan, H., Sun, X., Feng, S., & Zhang, W. (2023). Fabrication of MgO-Y2O3 Composite Nanopowders by Combining Hydrothermal and Seeding Methods. Materials, 16(1), 126. https://doi.org/10.3390/ma16010126