Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Backfill Specimens
2.2.2. UCS Test
3. Results
3.1. Extreme Gradient Boosting Model
3.2. Whale Optimization Algorithm
3.2.1. Encircling Prey
3.2.2. Bubble-Net Attacking Method
3.2.3. Search for Prey
3.3. WOA-XGBoost Model
3.4. The Process of WOA-XGBoost Modeling
3.5. Evaluation Methodology
4. Results and Discussion
4.1. UCS Development
4.2. Performance of WOA-XGBoost Model
4.3. Comparison with Machine Learning Models
4.4. Feature Importance Analysis of Input Variables
5. Conclusions
- The WOA-XGBoost prediction model had high accuracy for the UCS prediction of cemented PT backfill. Compared with PSO-XGBoost, XGBoost, and DT, the prediction results of WOA-XGBoost showed a 37.08%, 47.86%, and 55.39% reduction in RMSE, 40.55%, 45.29%, and 57.70% reduction in MAE, 3.39%, 6.20%, and 14.55% improvement in R2, respectively. The results indicated that the prediction performance of the XGBoost model can be greatly improved by the WOA algorithm.
- The results of the feature importance analysis showed that PT proportion was the most important input variable, followed by curing age, OPC proportion, FA proportion, and solid concentration. The importance score of the PT proportion was 0.48, and the total importance score of the proportions of raw materials was 0.72, indicating that the binder/aggregate ratio was the key to obtaining sufficient UCS for cemented PT backfill.
- WOA-XGBoost model could provide a promising method for the UCS prediction of cemented PT backfill. Therefore, the model can facilitate mine production. The model achieved better performance than other machine learning models and demonstrated potential for use in other geotechnical applications. In the future, with the addition of more training data, the performance of the WOA-XGBoost model may be more accurate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ercikdi, B.; Kulekci, G.; Yilmaz, T. Utilization of Granulated Marble Wastes and Waste Bricks as Mineral Admixture in Cemented Paste Backfill of Sulphide-Rich Tailings. Constr. Build. Mater. 2015, 93, 573–583. [Google Scholar] [CrossRef]
- Ma, D.; Kong, S.; Li, Z.; Zhang, Q.; Wang, Z.; Zhou, Z. Effect of Wetting-Drying Cycle On Hydraulic and Mechanical Properties of Cemented Paste Backfill of the Recycled Solid Wastes. Chemosphere 2021, 282, 131163. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Fall, M.; Cui, L. A Multiphysics-Viscoplastic Cap Model for Simulating Blast Response of Cemented Tailings Backfill. J. Rock Mech. Geotech. Eng. 2017, 9, 551–564. [Google Scholar] [CrossRef]
- Min, C.; Shi, Y.; Liu, Z. Properties of Cemented Phosphogypsum (Pg) Backfill in Case of Partially Substitution of Composite Portland Cement by Ground Granulated Blast Furnace Slag. Constr. Build. Mater. 2021, 305, 124786. [Google Scholar] [CrossRef]
- Qi, C.; Chen, Q.; Dong, X.; Zhang, Q.; Yaseen, Z.M. Pressure Drops of Fresh Cemented Paste Backfills through Coupled Test Loop Experiments and Machine Learning Techniques. Powder Technol. 2020, 361, 748–758. [Google Scholar] [CrossRef]
- Cihangir, F.; Ercikdi, B.; Kesimal, A.; Ocak, S.; Akyol, Y. Effect of Sodium-Silicate Activated Slag at Different Silicate Modulus On the Strength and Microstructural Properties of Full and Coarse Sulphidic Tailings Paste Backfill. Constr. Build. Mater. 2018, 185, 555–566. [Google Scholar] [CrossRef]
- Ercikdi, B.; Kesimal, A.; Cihangir, F.; Deveci, H.; Alp, I. Cemented Paste Backfill of Sulphide-Rich Tailings: Importance of Binder Type and Dosage. Cem. Concr. Compos. 2009, 31, 268–274. [Google Scholar] [CrossRef]
- Fall, M.; Benzaazoua, M.; Saa, E.G. Mix Proportioning of Underground Cemented Tailings Backfill. Tunn. Undergr. Space Technol. 2008, 23, 80–90. [Google Scholar] [CrossRef]
- Brakebusch, F.W. Basics of Paste Backfill Systems. Min. Eng. 1994, 56, 1175–1178. [Google Scholar]
- Li, Q.; Song, Z. High-Performance Concrete Strength Prediction Based On Ensemble Learning. Constr. Build. Mater. 2022, 324, 126694. [Google Scholar] [CrossRef]
- Imran, H.; Ibrahim, M.; Al-Shoukry, S.; Rustam, F.; Ashraf, I. Latest Concrete Materials Dataset and Ensemble Prediction Model for Concrete Compressive Strength Containing Rca and Ggbfs Materials. Constr. Build. Mater. 2022, 325, 126525. [Google Scholar] [CrossRef]
- Sun, Y.; Li, G.; Zhang, N.; Chang, Q.; Xu, J.; Zhang, J. Development of Ensemble Learning Models to Evaluate the Strength of Coal-Grout Materials. Int. J. Min. Sci. Technol. 2021, 31, 153–162. [Google Scholar] [CrossRef]
- De-Prado-Gil, J.; Palencia, C.; Silva-Monteiro, N.; Martínez-García, R. To Predict the Compressive Strength of Self Compacting Concrete with Recycled Aggregates Utilizing Ensemble Machine Learning Models. Case Stud. Constr. Mater. 2022, 16, e01046. [Google Scholar] [CrossRef]
- Kaloop, M.R.; Kumar, D.; Samui, P.; Hu, J.W.; Kim, D. Compressive Strength Prediction of High-Performance Concrete Using Gradient Tree Boosting Machine. Constr. Build. Mater. 2020, 264, 120198. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.; Chen, X.; Zhou, J.; Qi, C.; Chen, Q.; Rao, D. Artificial Intelligence Model for Studying Unconfined Compressive Performance of Fiber-Reinforced Cemented Paste Backfill. Trans. Nonferrous Met. Soc. China 2021, 31, 1087–1102. [Google Scholar] [CrossRef]
- Xiao, C.; Wang, X.; Chen, Q.; Bin, F.; Wang, Y.; Wei, W.; Yilmaz, E. Strength Investigation of the Silt-Based Cemented Paste Backfill Using Lab Experiments and Deep Neural Network. Adv. Mater. Sci. Eng. 2020, 2020, 6695539. [Google Scholar] [CrossRef]
- Qi, C.; Chen, Q.; Sonny Kim, S. Integrated and Intelligent Design Framework for Cemented Paste Backfill: A Combination of Robust Machine Learning Modelling and Multi-Objective Optimization. Miner. Eng. 2020, 155, 106422. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, S.; Qiu, Y. Optimization of Random Forest through the Use of Mvo, Gwo and Mfo in Evaluating the Stability of Underground Entry-Type Excavations. Tunn. Undergr. Space Technol. 2022, 124, 104494. [Google Scholar] [CrossRef]
- Zhang, P.; Yin, Z.; Jin, Y.; Chan, T.H.T.; Gao, F. Intelligent Modelling of Clay Compressibility Using Hybrid Meta-Heuristic and Machine Learning Algorithms. Geosci. Front. 2021, 12, 441–452. [Google Scholar] [CrossRef]
- Li, E.; Yang, F.; Ren, M.; Zhang, X.; Zhou, J.; Khandelwal, M. Prediction of Blasting Mean Fragment Size Using Support Vector Regression Combined with Five Optimization Algorithms. J. Rock Mech. Geotech. Eng. 2021, 13, 1380–1397. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Song, K. A New Hybrid Grey Wolf Optimizer-Feature Weighted-Multiple Kernel-Support Vector Regression Technique to Predict Tbm Performance. Eng. Comput. 2022, 38, 2469–2485. [Google Scholar] [CrossRef]
- Chang, Q.; Zhou, H.; Hou, C. Using Particle Swarm Optimization Algorithm in an Artificial Neural Network to Forecast the Strength of Paste Filling Material. J. China Univ. Min. Technol. 2008, 18, 551–555. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, J.; Khandelwal, M.; Yang, H.; Yang, P.; Li, C. Performance Evaluation of Hybrid Woa-Xgboost, Gwo-Xgboost and Bo-Xgboost Models to Predict Blast-Induced Ground Vibration. Eng. Comput. 2022, 36, 4145–4162. [Google Scholar] [CrossRef]
- Hu, Y.; Li, K.; Zhang, B.; Han, B. Strength Investigation of the Cemented Paste Backfill in Alpine Regions Using Lab Experiments and Machine Learning. Constr. Build. Mater. 2022, 323, 126583. [Google Scholar] [CrossRef]
- Qi, C.; Ly, H.; Minh Le, L.; Yang, X.; Guo, L.; Thai Pham, B. Improved Strength Prediction of Cemented Paste Backfill Using a Novel Model Based On Adaptive Neuro Fuzzy Inference System and Artificial Bee Colony. Constr. Build. Mater. 2021, 284, 122857. [Google Scholar] [CrossRef]
- Qi, C.; Fourie, A.; Chen, Q. Neural Network and Particle Swarm Optimization for Predicting the Unconfined Compressive Strength of Cemented Paste Backfill. Constr. Build. Mater. 2018, 159, 473–478. [Google Scholar] [CrossRef]
- Chen, T.Q.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the KDD’16: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Chen, Y.; Xu, Y.; Jamhiri, B.; Wang, L.; Li, T. Predicting Uniaxial Tensile Strength of Expansive Soil with Ensemble Learning Methods. Comput. Geotech. 2022, 150, 104904. [Google Scholar] [CrossRef]
- Yan, S.; Wu, L.; Fan, J.; Zhang, F.; Zou, Y.; Wu, Y. A Novel Hybrid Woa-Xgb Model for Estimating Daily Reference Evapotranspiration Using Local and External Meteorological Data: Applications in Arid and Humid Regions of China. Agric. Water Manag. 2021, 244, 106594. [Google Scholar] [CrossRef]
- JGJ/T 70-2009; Standard for Test Method of Performance on Building Mortar. Ministry of Housing and Urban-Rural Development: Beijing, China, 2009.
- Sheikhi, S. An Effective Fake News Detection Method Using Woa-Xgbtree Algorithm and Content-Based Features. Appl. Soft Comput. 2021, 109, 107559. [Google Scholar] [CrossRef]
- Tran, V.; Nguyen, D. Novel Hybrid Woa-Gbm Model for Patch Loading Resistance Prediction of Longitudinally Stiffened Steel Plate Girders. Thin-Walled Struct. 2022, 177, 109424. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhou, J.; Qiu, Y.; Zhu, S.; Armaghani, D.J.; Li, C.; Nguyen, H.; Yagiz, S. Optimization of Support Vector Machine through the Use of Metaheuristic Algorithms in Forecasting Tbm Advance Rate. Eng. Appl. Artif. Intell. 2021, 97, 104015. [Google Scholar] [CrossRef]
- Gu, Z.; Cao, M.; Wang, C.; Yu, N.; Qing, H. Research On Mining Maximum Subsidence Prediction Based On Genetic Algorithm Combined with Xgboost Model. Sustainability 2022, 14, 10421. [Google Scholar] [CrossRef]
- Su, J.; Wang, Y.; Niu, X.; Sha, S.; Yu, J. Prediction of Ground Surface Settlement by Shield Tunneling Using Xgboost and Bayesian Optimization. Eng. Appl. Artif. Intell. 2022, 114, 105020. [Google Scholar] [CrossRef]
- Nguyen, V.; Tran, V.; Nguyen, D.; Sadiq, S.; Park, D. Novel Hybrid Mfo-Xgboost Model for Predicting the Racking Ratio of the Rectangular Tunnels Subjected to Seismic Loading. Transp. Geotech. 2022, 37, 100878. [Google Scholar] [CrossRef]
- Song, Y.; Li, H.; Xu, P.; Liu, D. A Method of Intrusion Detection Based On Woa-Xgboost Algorithm. Discrete Dyn. Nat. Soc. 2022, 2022, 5245622. [Google Scholar] [CrossRef]
- Liu, L.; Fang, Z.; Qi, C.; Zhang, B.; Guo, L.; Song, K. Experimental Investigation On the Relationship Between Pore Characteristics and Unconfined Compressive Strength of Cemented Paste Backfill. Constr. Build. Mater. 2018, 179, 254–264. [Google Scholar] [CrossRef]
- Liu, K.; Dai, Z.; Zhang, R.; Zheng, J.; Zhu, J.; Yang, X. Prediction of the Sulfate Resistance for Recycled Aggregate Concrete Based On Ensemble Learning Algorithms. Constr. Build. Mater. 2022, 317, 125917. [Google Scholar] [CrossRef]
Chemical Components | FA (%) | OPC (%) | PT (%) |
---|---|---|---|
SiO2 | 51.41 | 29.00 | 61.10 |
CaO | 4.38 | 45.12 | 18.74 |
P2O5 | 0.15 | 0.28 | 8.80 |
MgO | 0.54 | 2.85 | 5.61 |
Fe2O3 | 3.82 | 5.70 | 0.86 |
Al2O3 | 35.17 | 0.01 | 0.83 |
SO3 | 1.30 | 3.31 | 0.67 |
K2O | 1.18 | 1.35 | 0.62 |
F | 0.00 | 0.00 | 0.50 |
Name | FA:OPC:PT Ratio | Solid Concentration |
---|---|---|
T1 | 0:1:2 | 70% |
T2 | 0:1:4 | 70% |
T3 | 0:1:6 | 70% |
T4 | 0:1:2 | 72% |
T5 | 0:1:4 | 72% |
T6 | 0:1:6 | 72% |
T7 | 0:1:2 | 75% |
T8 | 0:1:4 | 75% |
T9 | 0:1:6 | 75% |
T10 | 1:1:4 | 70% |
T11 | 1:1:6 | 70% |
T12 | 1:1:8 | 70% |
T13 | 1:1:10 | 70% |
T14 | 1:1:4 | 72% |
T15 | 1:1:6 | 72% |
T16 | 1:1:8 | 72% |
T17 | 1:1:10 | 72% |
T18 | 1:1:4 | 75% |
T19 | 1:1:6 | 75% |
T20 | 1:1:8 | 75% |
T21 | 1:1:10 | 75% |
Swarm Size | Training Set | Test Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | |
25 | 0.983 | 0.174 | 0.151 | 0.95 | 0.344 | 0.217 |
50 | 0.989 | 0.169 | 0.136 | 0.964 | 0.272 | 0.244 |
75 | 0.987 | 0.171 | 0.139 | 0.955 | 0.344 | 0.274 |
100 | 0.995 | 0.156 | 0.114 | 0.976 | 0.207 | 0.151 |
125 | 0.992 | 0.165 | 0.120 | 0.973 | 0.246 | 0.191 |
150 | 0.991 | 0.179 | 0.135 | 0.966 | 0.279 | 0.222 |
175 | 0.987 | 0.171 | 0.139 | 0.959 | 0.33 | 0.239 |
200 | 0.984 | 0.173 | 0.145 | 0.955 | 0.349 | 0.258 |
Population Size | Maximum Number of Iterations | Local Learning Factor | Global Learning Factor | The Proportionality Constant of the Rate |
---|---|---|---|---|
50 | 100 | 1.8 | 1.8 | 0.6 |
Model | Training Set | Test Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | |
WOA-XGBoost | 0.995 | 0.156 | 0.114 | 0.976 | 0.207 | 0.151 |
PSO-XGBoost | 0.981 | 0.201 | 0.153 | 0.944 | 0.329 | 0.254 |
XGBoost | 0.973 | 0.246 | 0.191 | 0.919 | 0.397 | 0.276 |
DT | 0.969 | 0.276 | 0.215 | 0.852 | 0.464 | 0.357 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, S.; Liu, Z.; Min, C.; Shi, Y.; Zhang, S.; Liu, W. Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm. Materials 2023, 16, 308. https://doi.org/10.3390/ma16010308
Xiong S, Liu Z, Min C, Shi Y, Zhang S, Liu W. Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm. Materials. 2023; 16(1):308. https://doi.org/10.3390/ma16010308
Chicago/Turabian StyleXiong, Shuai, Zhixiang Liu, Chendi Min, Ying Shi, Shuangxia Zhang, and Weijun Liu. 2023. "Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm" Materials 16, no. 1: 308. https://doi.org/10.3390/ma16010308
APA StyleXiong, S., Liu, Z., Min, C., Shi, Y., Zhang, S., & Liu, W. (2023). Compressive Strength Prediction of Cemented Backfill Containing Phosphate Tailings Using Extreme Gradient Boosting Optimized by Whale Optimization Algorithm. Materials, 16(1), 308. https://doi.org/10.3390/ma16010308