Controlled Silanization of Transparent Conductive Oxides as a Precursor of Molecular Recognition Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modification Procedure
2.2. Electrochemical Measurements
2.3. Contact Angle Measurements
3. Results and Discussion
3.1. Alkoxysilane Modification
3.2. Double-Alkoksysilane Modification
3.3. Two-Step Mixed Alkoksysilane Modification
3.4. Wettability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swebocki, T.; Niedziałkowski, P.; Cirocka, A.; Szczepańska, E.; Ossowski, T.; Wcisło, A. In Pursuit of Key Features for Constructing Electrochemical Biosensors—Electrochemical and Acid-Base Characteristic of Self-Assembled Monolayers on Gold. Supramol. Chem. 2020, 32, 256–266. [Google Scholar] [CrossRef]
- Prodromidis, M.I. Impedimetric Immunosensors—A Review. Electrochim. Acta 2010, 55, 4227–4233. [Google Scholar] [CrossRef]
- Ho, J.A.; Hsu, W.-L.; Liao, W.-C.; Chiu, J.-K.; Chen, M.-L.; Chang, H.-C.; Li, C.-C. Ultrasensitive Electrochemical Detection of Biotin Using Electrically Addressable Site-Oriented Antibody Immobilization Approach via Aminophenyl Boronic Acid. Biosens. Bioelectron. 2010, 26, 1021–1027. [Google Scholar] [CrossRef]
- Niedzialkowski, P.; Slepski, P.; Wysocka, J.; Chamier-Cieminska, J.; Burczyk, L.; Sobaszek, M.; Wcislo, A.; Ossowski, T.; Bogdanowicz, R.; Ryl, J. Multisine Impedimetric Probing of Biocatalytic Reactions for Label-Free Detection of DEFB1 Gene: How to Verify That Your Dog Is Not Human? Sens. Actuators B Chem. 2020, 323, 128664. [Google Scholar] [CrossRef]
- Niedziałkowski, P.; Bojko, M.; Ryl, J.; Wcisło, A.; Spodzieja, M.; Magiera-Mularz, K.; Guzik, K.; Dubin, G.; Holak, T.A.; Ossowski, T.; et al. Ultrasensitive Electrochemical Determination of the Cancer Biomarker Protein SPD-L1 Based on a BMS-8-Modified Gold Electrode. Bioelectrochemistry 2021, 139, 107742. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Tang, T.; Jed Harrison, D.; Lee, W.E.; Jemere, A.B. A Regenerating Ultrasensitive Electrochemical Impedance Immunosensor for the Detection of Adenovirus. Biosens. Bioelectron. 2015, 68, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Duffy, G.F.; Moore, E.J. Electrochemical Immunosensors for Food Analysis: A Review of Recent Developments. Anal. Lett. 2017, 50, 1–32. [Google Scholar] [CrossRef]
- Jayanthi, V.S.P.K.S.A.; Das, A.B.; Saxena, U. Recent Advances in Biosensor Development for the Detection of Cancer Biomarkers. Biosens. Bioelectron. 2017, 91, 15–23. [Google Scholar] [CrossRef]
- Gabriunaite, I.; Valiūnienė, A.; Poderyte, M.; Ramanavicius, A. Silane-Based Self-Assembled Monolayer Deposited on Fluorine Doped Tin Oxide as Model System for Pharmaceutical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2020, 177, 112832. [Google Scholar] [CrossRef]
- Miyata, T.; Hikosaka, T.; Minami, T. High Sensitivity Chlorine Gas Sensors Using Multicomponent Transparent Conducting Oxide Thin Films. Sens. Actuators B Chem. 2000, 69, 16–21. [Google Scholar] [CrossRef]
- Minami, T. Chapter Five—Transparent Conductive Oxides for Transparent Electrode Applications. In Semiconductors and Semimetals; Svensson, B.G., Pearton, S.J., Jagadish, C., Eds.; Oxide Semiconductors; Elsevier: Amsterdam, The Netherlands, 2013; Volume 88, pp. 159–200. [Google Scholar]
- Shim, Y.-S.; Moon, H.G.; Kim, D.H.; Jang, H.W.; Kang, C.-Y.; Yoon, Y.S.; Yoon, S.-J. Transparent Conducting Oxide Electrodes for Novel Metal Oxide Gas Sensors. Sens. Actuators B Chem. 2011, 160, 357–363. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Hu, S. Nanocomposites of Graphene and Graphene Oxides: Synthesis, Molecular Functionalization and Application in Electrochemical Sensors and Biosensors. A Review. Microchim Acta 2017, 184, 1–44. [Google Scholar] [CrossRef]
- Kim, C.-L.; Jung, C.-W.; Oh, Y.-J.; Kim, D.-E. A Highly Flexible Transparent Conductive Electrode Based on Nanomaterials. NPG Asia Mater. 2017, 9, e438. [Google Scholar] [CrossRef] [Green Version]
- Takamatsu, S.; Takahata, T.; Muraki, M.; Iwase, E.; Matsumoto, K.; Shimoyama, I. Transparent Conductive-Polymer Strain Sensors for Touch Input Sheets of Flexible Displays. J. Micromech. Microeng. 2010, 20, 075017. [Google Scholar] [CrossRef]
- Lee, K.-T.; Liu, D.-M.; Liang, Y.-Y.; Matsushita, N.; Ikoma, T.; Lu, S.-Y. Porous Fluorine-Doped Tin Oxide as a Promising Substrate for Electrochemical Biosensors—Demonstration in Hydrogen Peroxide Sensing. J. Mater. Chem. B 2014, 2, 7779–7784. [Google Scholar] [CrossRef]
- Banyamin, Z.; Kelly, P.; West, G.; Boardman, J. Electrical and Optical Properties of Fluorine Doped Tin Oxide Thin Films Prepared by Magnetron Sputtering. Coatings 2014, 4, 732–746. [Google Scholar] [CrossRef] [Green Version]
- Bierwagen, O. Indium Oxide—A Transparent, Wide-Band Gap Semiconductor for (Opto)Electronic Applications. Semicond. Sci. Technol. 2015, 30, 024001. [Google Scholar] [CrossRef]
- Ouerfelli, J.; Djobo, S.O.; Bernède, J.C.; Cattin, L.; Morsli, M.; Berredjem, Y. Organic Light Emitting Diodes Using Fluorine Doped Tin Oxide Thin Films, Deposited by Chemical Spray Pyrolysis, as Anode. Mater. Chem. Phys. 2008, 112, 198–201. [Google Scholar] [CrossRef]
- Jasiecki, S.; Czupryniak, J.; Ossowski, T.; Schroeder, G. FTO Coated Glass Electrode Functionalization with Transition Metal Cations Receptors via Electrostatic Self-Assembly. Int. J. Electrochem. Sci. 2013, 8, 12543–12556. [Google Scholar]
- Ahuja, T.; Rajesh; Kumar, D.; Tanwar, V.K.; Sharma, V.; Singh, N.; Biradar, A.M. An Amperometric Uric Acid Biosensor Based on Bis[Sulfosuccinimidyl] Suberate Crosslinker/3-Aminopropyltriethoxysilane Surface Modified ITO Glass Electrode. Thin Solid Film. 2010, 519, 1128–1134. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.O.; Hong, S.-Y.; Kim, M.; Park, S.-M.; Park, J.W. Modification of Indium–Tin Oxide (ITO) Glass with Aziridine Provides a Surface of High Amine Density. J. Colloid Interface Sci. 2004, 277, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Pruna, R.; Palacio, F.; Martínez, M.; Blázquez, O.; Hernández, S.; Garrido, B.; López, M. Organosilane-Functionalization of Nanostructured Indium Tin Oxide Films. Interface Focus 2016, 6, 20160056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthurasu, A.; Ganesh, V. Electrochemical Characterization of Self-Assembled Monolayers (SAMs) of Silanes on Indium Tin Oxide (ITO) Electrodes—Tuning Electron Transfer Behaviour across Electrode–Electrolyte Interface. J. Colloid Interface Sci. 2012, 374, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Göbel, G.; Talke, A.; Lisdat, F. FTO—An Electrode Material for the Stable Electrochemical Determination of Dopamine. Electroanalysis 2018, 30, 225–229. [Google Scholar] [CrossRef]
- Wang, P.; Li, S.; Kan, J. A Hydrogen Peroxide Biosensor Based on Polyaniline/FTO. Sens. Actuators B Chem. 2009, 137, 662–668. [Google Scholar] [CrossRef]
- Naderi Asrami, P.; Mozaffari, S.A.; Saber Tehrani, M.; Aberoomand Azar, P. A Novel Impedimetric Glucose Biosensor Based on Immobilized Glucose Oxidase on a CuO-Chitosan Nanobiocomposite Modified FTO Electrode. Int. J. Biol. Macromol. 2018, 118, 649–660. [Google Scholar] [CrossRef]
- Valiūnienė, A.; Kavaliauskaitė, G.; Virbickas, P.; Ramanavičius, A. Prussian Blue Based Impedimetric Urea Biosensor. J. Electroanal. Chem. 2021, 895, 115473. [Google Scholar] [CrossRef]
- sadat Vajedi, F.; Dehghani, H. A High-Sensitive Electrochemical DNA Biosensor Based on a Novel ZnAl/Layered Double Hydroxide Modified Cobalt Ferrite-Graphene Oxide Nanocomposite Electrophoretically Deposited onto FTO Substrate for Electroanalytical Studies of Etoposide. Talanta 2020, 208, 120444. [Google Scholar] [CrossRef]
- Terracciano, M.; Rea, I.; Politi, J.; De Stefano, L. Optical Characterization of Aminosilane-Modified Silicon Dioxide Surface for Biosensing. J. Eur. Opt. Soc.-Rapid Publ. 2013, 8, 13075. [Google Scholar] [CrossRef] [Green Version]
- Acres, R.G.; Ellis, A.V.; Alvino, J.; Lenahan, C.E.; Khodakov, D.A.; Metha, G.F.; Andersson, G.G. Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces. J. Phys. Chem. C 2012, 116, 6289–6297. [Google Scholar] [CrossRef]
- Taglietti, A.; Arciola, C.R.; D’Agostino, A.; Dacarro, G.; Montanaro, L.; Campoccia, D.; Cucca, L.; Vercellino, M.; Poggi, A.; Pallavicini, P.; et al. Antibiofilm Activity of a Monolayer of Silver Nanoparticles Anchored to an Amino-Silanized Glass Surface. Biomaterials 2014, 35, 1779–1788. [Google Scholar] [CrossRef] [PubMed]
- Ashur, I.; Jones, A.K. Immobilization of Azurin with Retention of Its Native Electrochemical Properties at Alkylsilane Self-Assembled Monolayer Modified Indium Tin Oxide. Electrochim. Acta 2012, 85, 169–174. [Google Scholar] [CrossRef]
- Sanli, S.; Ghorbani-Zamani, F.; Moulahoum, H.; Gumus, Z.P.; Coskunol, H.; Odaci Demirkol, D.; Timur, S. Application of Biofunctionalized Magnetic Nanoparticles Based-Sensing in Abused Drugs Diagnostics. Anal. Chem. 2020, 92, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Venkata Jagadeesh, R.; Lakshminarayanan, V. Electrochemical Investigation on Adsorption Kinetics of Long Chain Alkylsilanes and Influence of Solvents on Their Self-Assembly and Electron Transfer Behavior on Indium Tin Oxide. J. Appl. Electrochem. 2020, 50, 1129–1138. [Google Scholar] [CrossRef]
- Li, H.; Su, T.A.; Camarasa-Gómez, M.; Hernangómez-Pérez, D.; Henn, S.E.; Pokorný, V.; Caniglia, C.D.; Inkpen, M.S.; Korytár, R.; Steigerwald, M.L.; et al. Silver Makes Better Electrical Contacts to Thiol-Terminated Silanes than Gold. Angew. Chem. Int. Ed. 2017, 56, 14145–14148. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, J.-T. Transparent, Conductive and Superhydrophobic Cellulose Films for Flexible Electrode Application. RSC Adv. 2021, 11, 36607–36616. [Google Scholar] [CrossRef]
- Moses, P.R.; Wier, L.M.; Lennox, J.C.; Finklea, H.O.; Lenhard, J.R.; Murray, R.W. X-ray Photoelectron Spectroscopy of Alkylaminesilanes Bound to Metal Oxide Electrodes. Anal. Chem. 1978, 50, 576–585. [Google Scholar] [CrossRef]
- Zhu, M.; Lerum, M.Z.; Chen, W. How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica. Langmuir 2012, 28, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Cirocka, A.; Zarzeczańska, D.; Wcisło, A. Good Choice of Electrode Material as the Key to Creating Electrochemical Sensors—Characteristics of Carbon Materials and Transparent Conductive Oxides (TCO). Materials 2021, 14, 4743. [Google Scholar] [CrossRef]
- Kern, W. Others Handbook of Semiconductor Wafer Cleaning Technology; Noyes Publication: Park Ridge, NJ, USA, 1993; pp. 111–196. [Google Scholar]
- Cirocka, A.; Zarzeczańska, D.; Wcisło, A.; Ryl, J.; Bogdanowicz, R.; Finke, B.; Ossowski, T. Tuning of the Electrochemical Properties of Transparent Fluorine-Doped Tin Oxide Electrodes by Microwave Pulsed-Plasma Polymerized Allylamine. Electrochim. Acta 2019, 313, 432–440. [Google Scholar] [CrossRef]
- Kwok, D.Y.; Neumann, A.W. Contact Angle Measurement and Contact Angle Interpretation. Adv. Colloid Interface Sci. 1999, 81, 167–249. [Google Scholar] [CrossRef]
- Kwok, D.Y.; Neumann, A.W. Contact Angle Measurements and Interpretation: Wetting Behavior and Solid Surface Tensions for Poly(Alkyl Methacrylate) Polymers. J. Adhes. Sci. Technol. 2000, 14, 719–743. [Google Scholar] [CrossRef]
- Kwok, D.Y.; Gietzelt, T.; Grundke, K.; Jacobasch, H.-J.; Neumann, A.W. Contact Angle Measurements and Contact Angle Interpretation. 1. Contact Angle Measurements by Axisymmetric Drop Shape Analysis and a Goniometer Sessile Drop Technique. Langmuir 1997, 13, 2880–2894. [Google Scholar] [CrossRef]
- Orazem, M.E.; Pébère, N.; Tribollet, B. Enhanced Graphical Representation of Electrochemical Impedance Data. J. Electrochem. Soc. 2006, 153, B129. [Google Scholar] [CrossRef]
- Lasia, A. Electrochemical Impedance Spectroscopy and Its Applications; Springer-Verlag: New York, NY, USA, 2014; ISBN 978-1-4614-8932-0. [Google Scholar]
- Song, X.; Zhai, J.; Wang, Y.; Jiang, L. Self-Assembly of Amino-Functionalized Monolayers on Silicon Surfaces and Preparation of Superhydrophobic Surfaces Based on Alkanoic Acid Dual Layers and Surface Roughening. J. Colloid Interface Sci. 2006, 298, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.A.; Ogale, S.B.; Vijayamohanan, K.P. Tuning the Hydrophobic Properties of Silica Particles by Surface Silanization Using Mixed Self-Assembled Monolayers. J. Colloid Interface Sci. 2008, 318, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Xu, G.; Gao, Y.; An, Y. Surface Wettability of (3-Aminopropyl)Triethoxysilane Self-Assembled Monolayers. J. Phys. Chem. B 2011, 115, 450–454. [Google Scholar] [CrossRef]
- Siqueira Petri, D.F.; Wenz, G.; Schunk, P.; Schimmel, T. An Improved Method for the Assembly of Amino-Terminated Monolayers on SiO2 and the Vapor Deposition of Gold Layers. Langmuir 1999, 15, 4520–4523. [Google Scholar] [CrossRef]
Silane | Acronym | Molecular Structure |
---|---|---|
3-aminopropyltrimethoxysilane | APTMS | |
Trimethoxy(propyl)silane | PTMS | |
trimethoxy(octyl)silane | OTMS |
Silane | Reaction Conditions (Temperature, Time) | Electrode | Second Reaction Conditions (Temperature, Time) | Electrode |
---|---|---|---|---|
APTMS | 23 °C; 16 h | FTO/APTMS (16 h) | 23 °C; 16 h | FTO/APTMS/OTMS (16 h) |
23 °C; 72 h | FTO/APTMS (72 h) | 23 °C; 72 h | FTO/APTMS/OTMS (72 h) | |
50 °C; 0.5 h | FTO/APTMS (0.5 h) | |||
PTMS | 50 °C; 0.5 h | FTO/PTMS (0.5 h) | ||
OTMS | 23 °C; 16 h | FTO/OTMS (16 h) | 23 °C; 16 h | FTO/OTMS/APTMS (16 h) |
23 °C; 72 h | FTO/OTMS (72 h) | 23 °C; 72 h | FTO/OTMS/APTMS (72 h) | |
50 °C; 0.5 h | FTO/OTMS (0.5 h) | |||
APTMS and OTMS | 23 °C; 16 h | FTO/APTMS_OTMS (16 h) | ||
23 °C; 72 h | FTO/APTMS_OTMS (72 h) |
Electrode | Rct [Ω] | Q [µF] | n | W [µSs½] | Chi2 | Ea [V] | Ek [V] | ΔE [V] | Ia [µA] | Ik [µA] |
---|---|---|---|---|---|---|---|---|---|---|
FTO | 57.87 | 6.65 | 0.91 | 0.012 | 3.27 × 10−4 | 0.233 | −0.026 | 0.259 | 683.3 | −583.2 |
FTO/APTMS (16 h) * | 48.46 | 8.28 | 0.88 | 0.012 | 6.19 × 10−4 | 0.226 | −0.012 | 0.238 | 676.3 | −594.2 |
FTO/APTMS (72 h) * | 30.74 | 11.23 | 0.79 | 0.012 | 2.69 × 10−4 | 0.233 | 0.016 | 0.217 | 632.3 | −600.9 |
FTO/OTMS (16 h) * | 426.40 | 5.69 | 0.89 | 0.015 | 7.31 × 10−4 | 0.384 | −0.209 | 0.593 | 399.2 | −376.9 |
FTO/OTMS (72 h) * | 1545.00 | 3.52 | 0.84 | 0.004 | 3.47 × 10−4 | 0.521 | −0.311 | 0.832 | 298.5 | −326.8 |
FTO/APTMS_ OTMS (16 h) * | 55.05 | 8.03 | 0.88 | 0.012 | 5.85 × 10−4 | 0.244 | −0.016 | 0.260 | 609.1 | −591.4 |
FTO/APTMS_ OTMS (72 h) ** | 22,450.00 | 0.25 | 0.86 | - | 8.04 × 10−4 | 0.676 | −0.514 | 1.190 | 180.3 | −195.1 |
FTO/APTMS/ OTMS (16 h) ** | 336.20 | 6.35 | 0.87 | - | 1.05 × 10−3 | 0.346 | −0.167 | 0.513 | 478.2 | −429.3 |
FTO/APTMS/ OTMS (72 h) * | 1664.00 | 1.36 | 0.89 | 0.007 | 2.27 × 10−4 | 0.546 | −0.423 | 0.969 | 262.6 | −288.1 |
FTO/OTMS/ APTMS (16 h) * | 439.30 | 4.39 | 0.89 | 0.009 | 4.91 × 10−4 | 0.388 | −0.219 | 0.607 | 403.4 | −406.6 |
FTO/OTMS/ APTMS (72 h) * | 98.19 | 6.86 | 0.88 | 0.010 | 8.54 × 10−4 | 0.293 | −0.047 | 0.340 | 506.6 | −433.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaros, A.; Zarzeczańska, D.; Ossowski, T.; Wcisło, A. Controlled Silanization of Transparent Conductive Oxides as a Precursor of Molecular Recognition Systems. Materials 2023, 16, 309. https://doi.org/10.3390/ma16010309
Domaros A, Zarzeczańska D, Ossowski T, Wcisło A. Controlled Silanization of Transparent Conductive Oxides as a Precursor of Molecular Recognition Systems. Materials. 2023; 16(1):309. https://doi.org/10.3390/ma16010309
Chicago/Turabian StyleDomaros, Anna, Dorota Zarzeczańska, Tadeusz Ossowski, and Anna Wcisło. 2023. "Controlled Silanization of Transparent Conductive Oxides as a Precursor of Molecular Recognition Systems" Materials 16, no. 1: 309. https://doi.org/10.3390/ma16010309
APA StyleDomaros, A., Zarzeczańska, D., Ossowski, T., & Wcisło, A. (2023). Controlled Silanization of Transparent Conductive Oxides as a Precursor of Molecular Recognition Systems. Materials, 16(1), 309. https://doi.org/10.3390/ma16010309